摘要
本文中,我们给出了丢番图方程的解x,y,z,w的上界,其中p,q是给定的互素的正整数,a,b,c,d是给定的适合abed≠0的整数,此外,我们将指出在具体情形下如何把上界降低到方程允许的实际的解.最后,我们将用这个方法来解方程19.5x·17y=12.5z+41.17w+14, 5. 3x· 13y + 20= 7. 3z + 14. 13w和 13· 2x+ 5· 3y= 25. 2z+ 11. 3w.
In this paper the upper bounds for the solutions x, y, z, w to the diophantine equations apxqy + bpz + cqw + d = 0 and apx + bqy + cpz + dqw = 0 are computed, where p, q are given to be fixed relatively prime positive integers and a, b, c, d integers with abed ≠ 0. Also, we show the upper bounds in a particular case can be reduced to allow the practical solution of the equation. Finally, we use the method to solve the equations 19× 5x17y = 12 × 5z +41 ×17w + 14, 5 × 3x13y + 20 = 7 ×3z + 14× 13w and 13 × 2x + 5× 3y = 25× 2z + 11× 3w.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
1994年第4期482-490,共9页
Acta Mathematica Sinica:Chinese Series
关键词
丢番图方程
解
上界
diophantine equations, the solutions to the diophantine equations, the upper bounds for the solutions to the diophantine equations, p-adic expansions.