摘要
设C和r都是群,是G-型分次环,是Γ-型分次环.是双分次模,R#G是R的Smash积,A#Γ是A的Smash积。令W=(_gU_(σ-1))_(g,σ)即(g,σ)位置取_gU_(σ-1)的元素的|G|×|Γ|矩阵的全体组成的集合,且每个矩阵的每行和每列的非零元只有有限个,按矩阵运算,W构成(R#6,A#Γ)双模。则_RU_A定义了一个分次Morita对偶当且仅当_(R#G)W_(A#Γ)定义了一个Morita对偶。
Let G and Γ be groups,a graded ring of type G with an identity, a graded ring of type Γ with an identity,R#G and A#Γsmash products of R and A, respectively. Let W=(_gU_(σ-1))_(g,σ)i.e. a set of all|G|》×|Γ| matrices whose element in the(g,σ)-position belongs to gU_(σ-1). Suppose each matrix in W only has finitely non zero elements.Then W is an(R#G,A#Γ)-bimodule with the matrix addition and multiplication and _RU_Adefines a graded Morita duality iff _(R#G)W_(A#Γ) defines a Morita duality.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
1994年第6期756-761,共6页
Acta Mathematica Sinica:Chinese Series