摘要
本文在条件(I)下,证明了增生算子最速下降法和预解式迭代法弱收敛于零点的充要条件,以及非线性收缩半群弱收敛于平衡点的充要条件.所获结果推广了[1]中的基本定理,并与[2]所获得的相应强收敛充要条件对应.
A necessary and sufficient condition is presented which ensures the weak convergenceof the steepest descent and the resolvent iterations to accretive operators and of the contractionsemigroups in Banach spaces.The conclusion, which can be regarded as a weakly topologicalversion of the theorem established in[2] , generalizes and improves on those results proved in[1].
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
1994年第6期842-851,共10页
Acta Mathematica Sinica:Chinese Series
关键词
增生算子
迭代法
巴拿赫空间
Banach space,iterative met hods for accretive operators,nonlinear contractionsemigroups,weak Convergence