摘要
本文旨在证明形如 u_t(x,t)=Auxx(x,t)+f(u)微分方程组的第三边值问题近似解的存在唯一性问题。其中: (z,t)∈(0,L)×(0,T)=G_T u(x,t)=(u_1(x,t),u_2(x,t),…,u_m(x,t)) f(u)=(f_1(u),f_2(u),…,f_m(u))其边值条件为“u_x(0,t)=σ_1u(0,t),u_x(L,t)=-σ_2u(L,t) u(x,0)=φ(x),σ_1>0,σ_2>0,φ(x)满足边界条件: φ′(0)=σ_1φ(0),φ′(L)=-σ_2φ(L) [1]的作者解决了上述方程组的第一、二边值问题,本文用与[1]类似的方法解决了第三边值问题。实际上,对A,σ_1,σ_2和f含t变量的同类边值问题也有类似的结论。本文为简明计,仅对条件与[1]相同的情况进行论证。