摘要
本文采用描述潜水面的Boussinesq偏微分方程,求解含水层底板倾斜情况下,地下水流向完整沟时一维非稳定流的解析解,计算了含水层底板坡度70%以内地下水面线最高点地下水位及位置,与Luthin和Guitjens模型试验结果[1]及Shukla等的有限差分计算结果[5]比较,认为排水历时较短时,坡度小于40%解析解计算结果与他们的成果相符合,该文提出了含水层底板水平及倾斜情况下的排水沟距计算公式,供设计部门参考。
The partial differential Boussinesq equation describing the phreatic surface is used to derive the analytical solution of one dimensional unsteady flow in a phreatic acquifer resting on a incined impervious barrier with parallel drainage ditches. The highest water level and its location have been found when the slopeisless than 70%, and the calculated results are compared with the Luthin and Guitjens experimental result and Shukla et al finite difference solution (5). The reasonable agreement is obtained less than 40% slope when drainge time is not long.
出处
《水利学报》
EI
CSCD
北大核心
1994年第5期38-44,共7页
Journal of Hydraulic Engineering
关键词
潜水含水层
地下水
非稳定流
phreatic acquiter
sloping impermeable bed drainage
unsteady state flow of ground water
analytical solation