摘要
设(n,q ̄2─1)=1,则Dickson多项式D_m(x,1)是有限域F_q上的一个置换多项式。本文证明了:如果q是一个素数的幂(q≥5)。则存在正整数n,(n,q ̄2─1)=1,n<c_1(logq) ̄c2使得D_n(x,1)在F ̄q上恰有5个不动点。这里c_1,c_2是绝对常数.
If(n,q ̄2─ 1)=1 , then the Dickson polynomial D_n(x ,1) is a permutation polynomial of the finite field F_q. If the characteristic of F_q is at least 5,then D_n(x ,1) has at least 5 fixed points in F_r .It follows from a result of R. Nbauer that there is always some n where the number of fixed points is exactly 5.In this note we show that there is always a relatively small n with this property, namely there is such a nu mber n less than(c_1 log q) ̄c2 for some absolu te constants ci and c_2. The proof uses sieve metheds。
出处
《四川大学学报(自然科学版)》
CAS
CSCD
1994年第4期460-464,共5页
Journal of Sichuan University(Natural Science Edition)