期刊文献+

π-拟正规子群 被引量:3

π-QUASI-NORMAL SUBGROUPS
下载PDF
导出
摘要 本文讨论有限群的π-拟正规子群的性质及其对群结构的影响。 This paper discusses the properties of the π-quasi-normal subgroups of a finite group G, and investigates how the structure of G is influenced by the π-quasi-normal subgroups of G. The major conclusions are following: (1) Gis a π-quasi-nilpotent group, if every maximal subgroup of Gis π-quasi-normal in G. (2) every 2-maximal subgroup of C is π-quasi-normal in G, if G is a π-quasi-nilpotent group, or a q -basic group of order paq.(3) If all maximal subgroups of every Sylow subgoup of G are π-quasi-normal in G, then G is a supersolvable group whose every Sylow subgroup is a s -semi-normal subgroup of G. (4)p∈,π(G),if there exists a p'-Hall subgroup of G whose all maximal subgroups are p'-quasi-normal in G, then G belongs to one class of the following three classes of groups: (i) nilpotent groups; (ii) the groups which are extensions of p -groups by cyclic q -groups; (iii) the groups, with order pαqβ, whose every Sylow subgroup is cyclic.
作者 王坤仁
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 1994年第3期1-5,共5页 Journal of Sichuan Normal University(Natural Science)
关键词 正规子群 π拟正规子群 有限群 quasi-normal subgroup, p -quasi-normal subgroup, S -semi-normal subgroup, π-quas-inilpotent group
  • 相关文献

参考文献2

  • 1王坤仁.p-拟正规子群[J].四川师范大学学报(自然科学版),1993,16(3):41-45. 被引量:2
  • 2《数学研究与评论》第九卷(1989)总目录[J]数学研究与评论,1989(04).

共引文献1

同被引文献17

  • 1王坤仁.p-拟正规子群Ⅱ[J].四川师范大学学报(自然科学版),1995,18(1):7-11. 被引量:4
  • 2王坤仁.p-拟正规与p-幂零[J].四川师范大学学报(自然科学版),1995,18(1):29-32. 被引量:3
  • 3Kegel O H.Sylow gruppen und subnormalteiler endlicher gruppen[J].Math Z,1963,78:205-221.
  • 4Suzuki M.Group Theory [M].New York:Springer-Verlag,1986.
  • 5Huppert B.Endliche Gruppen I[M].New York:Springer-Verlag,1979.
  • 6Robinson D J S.A Course in the Theory of Groups[M].New York:Springer-Verlag,1982.
  • 7Ore O.Contributions to the theory of groups of finite order[J].Duke Math J,1939,5:431-460.
  • 8Robinson D J S. A Course in theTheory of Groups[M]. New York:Springer-Verlag,1982.
  • 9Ore O. Contributions to the theory of groups of finite order[J]. Duke MathJ,1939,5:431~460.
  • 10Kegel O H. Sylow grouppen und subnormalteiler endlicher grouppen[J]. MathZ,1962,78:205~221.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部