摘要
本文证明了定义在Bn={|z|=1}上的Cα类函数可解析开拓到Bn={|z|<1}内的一个充要条件.对于满足一定条件的Cα(Bn)类及C1(Bn)类函数,构造了Bn外分片解析,满足Plemelj公式的Cauchy型积分.
In this paper we show a necessary and sufficient condition that a function f(z) defined on Bn={|z|=1} and belonged to the class Cα(Bn) can be extended to be analytic in Bn={|z|<1}. When u(z) belongs to the class C1(Bn) as well as the class Cα(Bn) and satisfies some conditions, we respectively construct the Cauchy-type integrals which are analytic out of Bn and satisfy the Plemelj formula.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
1994年第5期7-11,共5页
Journal of Sichuan Normal University(Natural Science)
关键词
多复变函数
解析开拓
柯西型积分
function of several complex varibles, analytic extension, Cauchy-type integral