期刊文献+

HOMOCLINIC ORBITS OF THE DAVEY- STEWARTSON EQUATIONS 被引量:2

HOMOCLINIC ORBITS OF THE DAVEY- STEWARTSON EQUATIONS
下载PDF
导出
摘要 The homoclinic solutions problem of the Davey-Stewartson ( DS) Equations were studied. By using the Hirota's bilinear method, the homoclinic orbits of the Davey-Stewartson Equations were obtained through the dependent variable transformation. The homoclinic orbits of the Davey-Stewartson Equations were discussed. The homoclinic solutions problem of the Davey-Stewartson ( DS) Equations were studied. By using the Hirota's bilinear method, the homoclinic orbits of the Davey-Stewartson Equations were obtained through the dependent variable transformation. The homoclinic orbits of the Davey-Stewartson Equations were discussed.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第2期139-141,共3页 应用数学和力学(英文版)
基金 theTianyuanFoundation (A0 3 2 463 3 )
关键词 Davey-Stewartson equation homoclinic orbit Hirota method Davey-Stewartson equation homoclinic orbit Hirota method
  • 相关文献

同被引文献11

  • 1ZHANGJun,GUOBoling,SHENShoufeng.Homoclinic orbits of the doubly periodic Davey-Stewartson equation[J].Progress in Natural Science:Materials International,2004,14(11):1031-1032. 被引量:2
  • 2Hirota R.Direct methods in soliton theory[]..1980
  • 3Ablowitz M J,Herbst B M.On the numerical solution of the Sine-Gordon equation I.integrable discretizations and homoclinic manifolds[].Journal of Computational Physics.1996
  • 4Lai Derek W C,Chow Kwok W.‘Positon’and‘Dromion’solutions of the(2+1)-dimensional long wave-short wave resonance interaction equations[].Journal of the Physical Society of Japan.1999
  • 5Fokas A S.On the simplest integrable equation in 2+1[].Inverse Problems.1994
  • 6Strachan I A B.Wave solutions of a(2+1)-dimensional generalization of the nonlinear Schrdinger equation[].Inverse Problems.1992
  • 7Dai Z D,Jiang M L,Li D L.Davey-Stewartson equation[]..2007
  • 8Herbst B M,Ablowitz M J.Numerically induced chaos in the nonlinear Schr dinger equation[].Physical Review.1989
  • 9Ablowitz M J,Herbst B M.On homoclinic structure and numerically induced chaos for the nonlinear Schr dinger equation[].Society for Industrial and Applied Mathematics.1990
  • 10Herbst,B. M. et al.Numerical homoclinic instabilities and the complex modified Korteweg-de Vries equation[].Computers in Physics.1991

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部