期刊文献+

四阶极限点型微分算子积的自伴边值问题 被引量:1

Self-adjoint Boundary Value for Products of Limit-point Fourth-order Differential Operators
下载PDF
导出
摘要 在微分算式l(y)=y(4) -(py′)′+qy(t∈ [a,∞ ) )满足lk(y) (k=1,2)均为极限点型条件下,该文运用Calkin定理及微分算子自伴扩张理论,以边界条件形式研究了由l(y)生成的 2个微分算子积的自伴边值问题,并获得其自伴的充分必要条件,其结果对微分算子理论的研究是有益的。 For the differential expression l(y)=y (4)-(py′)′+qy,t∈Self-adjoint Boundary Value for Products of Limit-point Fourth-order Differential Operators $$$$ YANG Chuan-fu1,WANG Yu-ping2 (1.School of Sciences, NUST, Nanjing 210094, China; 2.College of Information Science and Technology, Nanjing Forest University, Nanjing 210037, China) Abstract: For the differential expression l(y)=y (4)-(py′)′+qy,t∈[a,∞), under the assumption that lk(y) (k=1,2) is limit-point, employing Calkin’s theorem and the theory of self-adjoint extensions of differential operators, we investigated the self-adjointness of product operator L 2L 1 where L i(i=1,2) are generated by l(y) with some boundary conditions. A necessary and sufficient condition for self-adjointness of L 2L 1 was obtained by boundary conditions. This result is useful in theory of the differential operators.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2005年第1期116-118,共3页 Journal of Nanjing University of Science and Technology
关键词 极限点型微分算式 自伴算子 微分算子积 limit-point differential expression self-adjoint operator products of differential operators
  • 相关文献

参考文献5

  • 1刘景麟.对称算子自伴延拓的Calkin描述[J].内蒙古大学学报:自然科学版,1988,19(4):573-587.
  • 2Cao Zhijiang, Sun Jiong, Edmunds D E. On self-adjointness of the product of two second-order differential operators [J]. Acta Math.Sinica(English Series), 1999, 15(3): 375-386.
  • 3Kauffman R, Read T, Zettl A. The deficiency index problem of powers of ordinary differential expressions [M]. New York: Springer-Verlag, 1977.
  • 4Naimark M A. Linear differential operators [M]. New York: Frederick Ungar Publishing Co,1968.
  • 5Sun Jiong. On the self-adjoint extensions of symmetric ordinary differential operators with middle deficiency indices [J]. Acta Math. Sinica (New Series), 1986, 2(2): 152-167.

共引文献2

同被引文献6

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部