期刊文献+

十字型截面杆塑性屈曲的精确解 被引量:1

Exact Analytical Solutions of the Inelastic Buckling of a Cruciform Column
下载PDF
导出
摘要 对初始各向同性且率无关的材料,用J2流动理论求得了十字型截面杆扭转屈曲的三维解析精确解.比较精确解和用板理论得到的近似解,证明了用板理论求解板的塑性屈曲问题是足够精确的,由此证明了塑性屈曲佯谬并不是板理论的误差所引起的. The exact critical compressive stresses are obtained with the threedimensional theory for twisting bifurcation of a cruel form column, of which the material with a smooth yield surface and obeying the normality flow rule is initially isotropic and time-independent. It is shown that the critical stresses obtained with plate theories are accurate in comparison with the exact ones,so the plastic buckling paradox is not resulted from the error of plate theories.
机构地区 同济大学建工系
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 1994年第1期77-82,共6页 Journal of Tongji University:Natural Science
关键词 塑性 十字型截面杆 屈曲载荷 Plastic buckling, Cruel form column, Exact solution
  • 相关文献

参考文献1

  • 1Lin T H,Adv Appl Mech,1971年,11期,255页

同被引文献11

  • 1MARTIN J, ROBERT M. Novel flexible pivot with large angular range and small center shift to be integrated into a bio-inspired robotic hand [J]. J Intel Mat Syst Str, 2011, 22(13): 1431-1437.
  • 2KIM K, AHN D, GWEON D. Optimal design of a 1-rotational DOF flexure joint for a 3-DOF H-type stage[J]. Mechatronics, 2012, 22: 24-32.
  • 3BI Shusheng , QIAO Tao, ZHAO Horgzhe, et al. Analysis of annulus-shaped compliant pivot with series-paral- lel leaves[J]. J Meeh EngSei, 2013, 227(5): 1090-1101.
  • 4PARK S R, YANG S H. A mathematical approach for analyzing ultral precision positioning system with compli- ant mechanism[J]. J Mater Process Tech, 2005, 164-165: 1584-1589.
  • 5LOBONTIU N, PAINE J S N, MALLEY E O, et al. Parabolic and hyperbolic flexure hinges: flexibility, mo- tion precision and stress characterization based on compliance closed-form equations [J]. Precis Eng, 2002, 26: 183-192.
  • 6TREASE B P, MOON Y M, KOTA S. Design of large-displacement compliant joints [J]. ASME Trans J Mech Des, 2005, 127: 788-798.
  • 7LIU C J, WU X Q, GAN W M, et al. Analysis of torsion stiffness of flexible pivot bearing with radial array rec- tangular section [J]. Key Engin Mater, 2014, 584: 214-219.
  • 8SAPOUNTZAKIS E J, MOKOS V G. Nonuniform torsion of bars of variable cross section [J]. Comput Struct, 2004, 82: 703-715.
  • 9BI Shusheng ZHAO Shanshan SUN Minglei YU Jingjun ZONG Guanghua.Novel Annulus-shaped Flexure Pivot in Rotation Application and Dimensionless Design[J].Chinese Journal of Mechanical Engineering,2009,22(6):800-809. 被引量:7
  • 10刘红军,李正良.高强度双角钢十字组合断面承载力研究[J].工程力学,2013,30(1):140-146. 被引量:10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部