摘要
以Curtin变分原理为基础,通过对时间域进行离散,分别导出了动力分析的单步及两步时间元法.在对两种时间元法的稳定性进行分析的基础上,构造出相应的无条件稳定计算格式.算例分析表明,用本方法所获得的数值精度明显优于常用的Wilson-θ法和Newmark-β法.
On the basis of Gurtin variational principles, the take finite element methods named single--and two--step time elements are proposed in this paper.Analysed with numerical stability, the corresponding formulations of unconditional stability are also developed, which are obviously higher in accuracy than the existing algorithms for dynamic analysis.
出处
《同济大学学报(自然科学版)》
EI
CAS
CSCD
1994年第4期511-516,共6页
Journal of Tongji University:Natural Science
关键词
动力分析
时间元法
稳定性
变分原理
Variational principles
Dynamic analysis
Time elements
Numerical stability