期刊文献+

pH5条件下生物制氢反应器的启动及运行特性 被引量:18

Start-up and Continuous Operation of Bio-Hydrogen Production Reactor at pH5
下载PDF
导出
摘要 采用连续流搅拌槽式反应器 (CSTR) ,以糖蜜废水为底物 ,探讨了pH5条件下生物制氢反应器的启动和运行特性 .结果表明 ,保持反应器内 pH为 5 ,污泥接种量为 6 g/L、COD启动负荷为 7 0kg/ (m3 ·d)、水力停留时间 (HRT)为 6h等条件 ,可在30d内完成产氢发酵菌群的驯化 .此时系统氧化还原电位 (ORP)稳定在 - 4 6 0mV~ - 4 80mV之间 ,系统呈现明显的混合酸发酵特性 .其液相末端发酵产物比例分布相当 ,乙酸、乙醇、丁酸、丙酸和戊酸含量分别占发酵产物总含量的 36 % ,33% ,18% ,13% .没有占绝对优势的发酵产物 .气相中的氢气含量 30 %~ 35 % ,其最大产氢能力为 1 3m3 / (m3 ·d) .生物制氢反应器混合酸发酵稳定运行期各种产酸发酵细菌处于均势地位 ,以球菌和杆菌为主 . A continuous stirred-tank reactor(CSTR)for bio-hydrogen production using molasses wastewater as substrate was investigated. Emphasis was placed on assessing the start-up and continuous operation characteristics when keeping pH value constant. It was found that at pH of 5, biomass of 6g/L, organic loading rate (OLR) of 7.0kg/(m3·d) and a hydraulic retention time (HRT) of 6h, an equilibrial hydrogen-producing microbial community could be established within 30 days. Following that, oxidation redox potential (ORP) were kept within the ranges -460mV~-480mV. Typical mixed acid type fermentation was exhibited in the reactor. Little difference was observed in the distribution of liquid end products. The liquid end products proportion of the total amount was 36% of acetic acid, 33% of ethanol, 18% of butyric acid, 13% of propionic acid and valeric acid, respectively. Hydrogen content in the biogas was about 30%~35%. Maximal hydrogen production rate was 1.3m3/(m3·d). The acid-producing fermentative bacteria were in the same preponderant status when the reactor showed mixed acid type fermentation. They are mostly cocci and bacilli.
出处 《环境科学》 EI CAS CSCD 北大核心 2005年第2期177-180,共4页 Environmental Science
基金 国家重点基础研究发展规划 (973 )项目 (G2 0 0 0 0 2 64 0 2 ) 国家高技术研究发展计划 (863 )项目 (2 0 0 3AA5 15 0 3 0 )
关键词 生物制氢 PH 混合酸发酵 菌群 bio-hydrogen production pH mixed-acid type fermentation microbial community
  • 相关文献

参考文献13

  • 1Mizuno O, Dinsdale R, Hawkes FR, Hawkes DL and Noike T. Enhancement of hydrogen production from glucose by nitrogen gas sparging [J]. Bioresource Technol., 2000, 73(1): 59~65.
  • 2Kondratieva EN, Gogotov I. Production of molecular hydrogen in microorganisms [J]. Adv. Biochem. Eng., 1983, 28: 139~191.
  • 3Bowles LK, Ellefson W. Effects of butanol on Clostridium acetobutylicum [J]. Appl. Environ. Microbiol., 1985, 50(5): 1165~1170.
  • 4Yu HQ, Fang HP. Acidification of mid- and highstrength dairy wastewaters [J]. Wat. Res., 2001, 35: 3697~3705.
  • 5Dabrock B, Bahl H, Gottschalk G. Parameters affecting solvent production by Clostridium pasteurianum [J]. Appl. Environ. Microbiol., 1992, 58: 1233~1239.
  • 6Gottschalk G. Bacterial metabolism [M]. New York: Springer-Verlag, 1986. 242~249.
  • 7Horiuchi JI, Shimizu T, Tada K,et al. Dynamic behavior in response to pH shift during anaerobic acidogenesis with a chemstat culture [J]. Biotech Tech., 1999, 13: 155~157.
  • 8Horiuchi JI, Shimizu T, Tada K, Kanno T, Kobayashi M. Selective production of organic acids in anaerobic acid reactor by pH control [J]. Bioresource Technology, 2002, 82: 209~213.
  • 9Ren NQ, Wang BZ and Ma F. Hydrogen bio-production of carbohydrate fermentation by anaerobic sludge process [A]. In: Proceedings 68th Annual Water Environmental Federal Conference [C]. Miami: Kluwer Academic/Plenum Publisher, 1995, 145~152.
  • 10Lay JJ. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen [J]. Biotechnol. & Bioeng., 2000, 68(3): 269~278.

共引文献4

同被引文献233

引证文献18

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部