期刊文献+

Boundary Feedback Stabilization of Naghdi's Model 被引量:3

Boundary Feedback Stabilization of Naghdi's Model
原文传递
导出
摘要 We consider the stabilization of Naghdis model by boundary feedbacks wherethe model has a middle surface of any shape. First, applying the semigroup approach and theregularity of elliptic boundary value problems, we obtain the existence, the uniqueness, and theproperties of solutions to Naghdis model. Finally, we establish the exponential decay rates forNaghdis model under some checkable geometric conditions on the middle surface. We consider the stabilization of Naghdis model by boundary feedbacks wherethe model has a middle surface of any shape. First, applying the semigroup approach and theregularity of elliptic boundary value problems, we obtain the existence, the uniqueness, and theproperties of solutions to Naghdis model. Finally, we establish the exponential decay rates forNaghdis model under some checkable geometric conditions on the middle surface.
作者 ShuGenCHAI
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2005年第1期169-184,共16页 数学学报(英文版)
基金 This work is supported by the Mathematical Tianyuan Foundation of China(A0324641) Youth Science Foundation of Shanxi Province,China(20041001)
关键词 Naghdi's model REGULARITY Boundary stabilization Naghdi's model Regularity Boundary stabilization
  • 相关文献

参考文献11

  • 1I. Lasiecka,R. Triggiani.Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions[J].Applied Mathematics & Optimization.1992(2)
  • 2Taylor,M.E.Partial Differential Equation Ⅰ[]..1996
  • 3Naghdi,P.M.The Theory of Shell and Plates,in Handbuch der Physik,VIa2[]..1972
  • 4Lagnese J E.Boundary Stabilization of Thin Plates[]..1989
  • 5Lions JL.Exact controllability, stabilization and perturbations for distributed systems[].SIAM Review.1988
  • 6Pazy A.Semigroups of Linear Operators and Applications to Partial Differential Equations[].Journal of Applied Mathematics.1983
  • 7Agmon S,Douglis A,Nirenberg L.Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II[].Communications of the ACM.1964
  • 8Hebey,E.Sobolev Spaces on Riemannian Manifolds[].Lecture Notes in Mathematics.1996
  • 9Yao,P.F.:.The observability inequalities for shallow shell[].SIAM JContrand Optim.2000
  • 10Wu,H,Chen,W.:.Selected Lecture in Riemannian Geometry[]..1981

同被引文献26

  • 1柴树根,姚鹏飞.Observability inequalities for thin shells[J].Science China Mathematics,2003,46(3):300-311. 被引量:3
  • 2FENG Shaoji FENG Dexing.Exact internal controllability for shallow shells[J].Science in China(Series F),2006,49(5):566-577. 被引量:2
  • 3张淑兰.DJ—2可变矩形电子束曝光系统偏转放大器[J].LSI制造与测试,1989,10(4):14-19. 被引量:49
  • 4Russell D L. Exact Boundary Value Controllability Theorems for Wave and Heat Processes in Star-complemented Regions[A].New York:Dekker,1974.291-319.
  • 5Russell D L. Controllability and Stabilizability Theory for Linear Partial differential Equations:Recent Progress and Open Questions[J].SIAM Review,1978,(04):639-739.
  • 6Littman W. Near Optimal time Boundary Controllability for a Class of Hyperbolic Equations[A].BerlinrNew York:Springer-Verlag,1987.307-312.
  • 7Kalman R E. Mathematical Description of Linear Dynamical Systems[J].SIAM Journal on Control and Optimization,1963.152-192.
  • 8Lions J L. Exact Controllability,Stabilization and Perturbations for Distributed System[J].SIAM Review,1998.1-68.
  • 9Ho L F. Observabilite Fronti'ere de Lequation Des Ondes[J].Comptes Rendus de l'Académie des Sciences Paris,1986.443-446.
  • 10Chen G. Control and Stabilization for Wave Equation in a Bounded Domain Ⅱ[J].SIAM Journal on Control and Optimization,1981.114-122.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部