期刊文献+

部分因析裂区设计最优分区组的理论 被引量:2

原文传递
导出
摘要 在最小低阶混杂和最大估计能力这两个准则下,研究了部分因析裂区 (FFSP)设计的最优分区组的问题.为了区分非同构的分区组FFSP设计发展了最 小附加混杂(MSA)和最大附加估计能力(MSEC)准则,并建立了通过分区组的 参照设计来识别MSA或MSEC分区组FFSP设计的一般规则.
出处 《中国科学(A辑)》 CSCD 北大核心 2005年第3期265-272,共8页 Science in China(Series A)
基金 国家自然科学基金(批准号:10231030)中国博士后科学基金(批准号:20040350240)资助项目
  • 相关文献

参考文献17

  • 1Box G E E Jones S. Split-plot designs for robust product experimentation. J Appl Statist, 1992, 19:3-26.
  • 2Mukerjee R, Fang K T. Fractional factorial split-plot designs with minimum aberration and maximum estimation capacity. Statist Sinica, 2002, 12:885-903.
  • 3Huang P, Chen D, Voelkel J O. Minimum aberration two-level split-plot designs. Technometrics, 1998,40 (4): 314-326.
  • 4Fries A, Hunter W G. Minimum aberration 2^k-p designs. Technometrics, 1980, 22(4): 601-608.
  • 5Bingham D, Sitter R R. Minimum aberration two-level fractional factorial split-plot designs. Technometrics, 1999, 41(1): 62-70.
  • 6Bingham D, Sitter R R. Some theoretical results for fractional factorial split-plot designs. Ann Statist,1999, 27(4): 1240-1255.
  • 7Bingham D, Sitter R R. Design issues in fractional factorial split-plot experiments. J Quality Technology,2001, 33(1): 2-15.
  • 8Cheng C S, Steinberg D M, Sun D X. Minimum aberration and model robustness for two-level factorial designs. J Roy Statist Soc, Ser B, 1999, 61:85-93.
  • 9Cheng C S, Mukerjee R. Regular fractional factorial designs with minimum aberration and maximum estimation capacity. Ann Statist, 1998, 26:2289-2300.
  • 10Zhang R, Park D K. Optimal blocking of two-level fractional factorial designs. J Statist Plann Infer, 2000,91(1): 107-121.

同被引文献45

  • 1杨贵军,刘民千,张润楚.2_(IV)^(m-p)设计的弱最小低阶混杂与最多纯净两因子交互效应[J].中国科学(A辑),2005,35(9):1071-1080. 被引量:5
  • 2艾明要,张润楚.用参照设计刻画最小附加混杂部分因析裂区设计[J].中国科学(A辑),2006,36(1):52-71. 被引量:1
  • 3Fries A, Hunter W G. Minimum aberration 2^k-p designs. Technometrics, 1980, 26:225-232.
  • 4Chen J, Sun D X, Wu C F J. A catalogue of two-level and three-level fractional factorial designs with small runs. Internat Statist Rev, 1993, 61 ( 1 ): 131 - 145.
  • 5Tang B, Wu C F J. Characterization of minimum aberration 2^n-k designs in terms of their complementary designs. Ann Statist, 1996, 25:1176-1188.
  • 6Suen C Y, Chen H, Wu C F J. Some identities on q^n-m designs with application to minimum aberrations.Ann Statist, 1997, 25(3): 1176-1188.
  • 7Wu C F J, Zhang R C. Minimum aberration designs with two-level and four-level factors. Biometrika,1993, 80(1): 203-209.
  • 8Wu C F J, Zhang R C, Wang R G, Construction of asymmetrical orthogonal arrays of the type OA(8^k,(s^r 1)^n 1 ... (s^r t)^n t ). Statist Sinica, 1992, 2:203-219.
  • 9Zhang R C, Shao Q. Minimum aberration (s^2)s^n-k designs. Statist Sinica, 2001, 11:213-223.
  • 10Mukerjee R, Wu C F J. Minimum aberration designs for mixed Factorials in terms of complementary sets,Statist Sinica, 2001, 11 : 225-239.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部