期刊文献+

用参数法求一些特殊的线性代数方程组的数值解 被引量:2

PARAMETRIC METHODS FOR SOME SPECIAL SYSTEM OF LINEAR ALGEBRAIC EQUATIONS
原文传递
导出
摘要 本文将求解线性方程组数值解的双参数法进行推广,得到(?)种求解一些特殊的线性方程组的较为(?)般的方法-参数法,并具体给出利用三组参数求解拟二对角方程组和拟Hessen-berg方程组的算法.此算法具有明显的优越性.比如,在求解拟二对角方程组时,和利用LU分解法相比,乘除运算的次数由11n-16变为9n+20,所需要设定的向量组由5个降为4个.在求解拟Hessenberg方程组时,和Gauss消去法相比,除法运算的次数由1/2n(n+1)变为3n-4.这对求解大型的拟三对角方程组和拟Hessenberg方程组非常有利.当然,此种方法还可以用来求解其它一些方程组。 In this paper, biparametric methods for system of linear algebraic equations are popularized and more commonly methods, parametric methods, are derived for some special system of linoar equations. Meanwhile, the concrete algorithms, which are used to solve systems of quasi-tridiagonal equations and quasi-Hesscnberg equations are suggested. These methods have many advantages. For example, when they are used to solve system of quasi-tridiagonal equations, the number of multiplication and division operation changes form 11n - 16 to 9n + 20 comparing with LU decomposition method. Moreover, the number of vectors need to be set in program is reduced from 5 to 4. When they are used to solve system of quasi-tridiagonal equations, the number of division operation is reduced form 1/2n (n + 1) to 3n - 1 comparing with the Gaussian elimination. The methods in this paper are beneficial to solve large scale systems of quasi-tridiagonal equations and quasi-Hessenberg equations. Of course, these methods can also be used to solve other systems of linear equations.
出处 《数值计算与计算机应用》 CSCD 2005年第1期44-53,共10页 Journal on Numerical Methods and Computer Applications
关键词 拟三对角方程组 求解 线性方程组 数值解 线性代数方程组 向量组 次数 参数法 乘除运算 解法 System of linear algebraic equations, parametric methods, system of quasi-tridiagonal equations, system of quasi-Hessenberg equations.
  • 相关文献

参考文献3

  • 1徐树芳.矩阵计算的理论与方法[M].北京大学出版社,1995..
  • 2C. Brezinski. Projection methods for linear systems. Journal of Computational and Applied Mathematics 77 (1997) 35-51.
  • 3JH威尔金森著 石钟慈 邓健新译.代数特征值问题[M].北京:科学出版社,2001..

共引文献9

同被引文献6

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部