期刊文献+

Painlevé方程解的渐近性态的数值分析方法 被引量:3

ASYMPTOTICS ANALYSIS OF NUMERICAL SOLUTION OF PAINLEVE EQUATION
原文传递
导出
摘要 Painleve方程是六类重要的二阶代数微分方程,它们的发展(?)直受到人们的关注.解的渐近性态是重要的研究方向.由于解的渐近性态难以直接观察出来,所以我们用微分方程数值解研制出Painleve方程解的渐近性态的分析系统.通过此系统对Paileve方程解的渐近性态进行分析,已经得到(?)些结果,部分结果与有关文献的结果相当吻合,进而为从理论上找出具体的相关性质提供了方法和依据. The Painleve equation are six kinds important second differential equation. Their development has been being concerned. The asymptoties behavior of solutions is an important research trend. It is difficult to observe the asymptoties behavior of solutions, so the analysis system of Painleve equation has been studied by means of the numerical solution of differential equations. By this system, the asymptoties solutin of the third, fifth, sixth Painleve equation has been further done, and some results have obtained. Some of those results conform that form related documents. Therefore the numerical solutions analysis has provided a way and reference for theoretically seeking concrete relevant characteristics.
出处 《数值计算与计算机应用》 CSCD 2005年第1期58-64,共7页 Journal on Numerical Methods and Computer Applications
关键词 渐近性态 方程解 代数微分方程 二阶 数值解 性质 具体 吻合 观察 相关性 Painlove Equation, Numerical Solution, Asymptotics
  • 相关文献

参考文献6

  • 1Youmin Lu and J.McLeod, Asymtotics of the Nonnegative Solutions of then General Fifth Painleve Equation. Applicable Analysis, Vol.72(3-4) (1999) 501-517.
  • 2Workshop on Painleve Transcedents, Their asymptotics and Physical Applications,NATOASI Ser.B: Physics Vol.278(1990) Sainte Adele, Quebec, ed. by Levi and P. Winternitz.
  • 3A.R.Its, A.S. Fokas and A.A. Kapaev, On the asymptotic analysis of the Painlevd equations via the isomonodromy method, Nonlinearity 7 (1994), 1291-1325.
  • 4Kitaev, A.V. The method of isomndrmy deformation and the asymptotics of solutions of the "completele" third Painleve equation, Math. USSR Sbormik, 62(1987), 421-444.
  • 5Shimormura, S. On solutions of the fifth Painlevd equation on the posititive real axis I, Funkcialaj Ekvacioj, 28(1985), 341-370.
  • 6Shimormura, S. On solutions of the fifth Painleve equation on the posititive real axis Ⅱ, Funkcialaj Ekvacioj, 28(1987), 203-224.

同被引文献4

  • 1Joshi N,McLeod J B,Kruskal M D.The Painlevé connection problem:an asy mptotic approach Ⅰ[J].Stud.Appl.Math.,1992,86:315-376.
  • 2Clarkson Peter A.Painleve Equations -Nonlinear Special Functions Section 5,Asymptotic and connection formulae for the Painlev equations[J].www.uc3m.es/uc3m/dpto/MAT-EM/summerschool/Leganes5.pdf.
  • 3Lu Youmin.Asymtotics of the Nonnegative Solutions of then General Fifth Painlev Equation[J].Applicable Analysis,1999,72(3-4):501-517.
  • 4Lu Youmin.Asymtotics of the negative Solutions to General Fifth Painlev Equation[J].Applicable Analysis,2000,73(3-4):523-541.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部