期刊文献+

回旋同步辐射自吸收的特性 被引量:1

Characteristics of the Self Absorption of Gyrosynchrotron Radiation
下载PDF
导出
摘要 详细研究了高能电子产生的回旋同步辐射自吸收的特性,并用磁偶极子场的 射电微波源模型计算了它的光学厚度.发现: (1)自吸率Kv随谐波数s的增加迅速地 下降,以致只有低次谐波(s<5)上的自吸收才会对微波爆发谱产生实质性的影响; (2) 自吸率κv随暗波数s下降的陡度还随高能电子的能谱指数δ的增加和其低能截止能量 E0的下降而迅速增加; (3)κv值还随传播角的增大而增加,并在70°至75°范围内达到 极值; (4)假设高能电子数密度为103cm-3,则在2≤s≤5范围内的自吸收的光学厚 度τvself在101-10-2之间变化,这些值约比回旋共振吸收的光学厚度τvgyro小3至4 个数量级.τvself在均匀磁场情况下可能被高估.只有当被加速的高能电子的数密度大于 104cm-3时,自吸收的光学厚度才开始能与回旋共振吸收的光学厚度相比较. The characteristics of the self absorption of gyrosynchrotron emission arc-investigated detail and its optical depth is estimated from radio microwave source with a magnetic dipole field. It is shown that: (1) the self absorptivities κV(?) dicrease rapidly with increasing harmonic number s(= v/vB), so that only these absorptions of the lower harmonics (s ≤ 5) can affect substantially microwave burst sprectra; (2) this decrease becomes more quickly as increasing energy spectral index 5 and decreasing low-energy cutoff E0 of energetic electrons; (3) κv(?)increase also obviously as increasing propagation angle θ and reach maximum in the range of 70° - 75°; (4) for 2 ≤ s ≤ 5 the optical depths of the self absorption, τv(?)self,s, are in the range of 101 - 10-2. This value is 103 - 104 lower than that of the gyroresonance absorption, assuming the number density of energetic electrons. N - 103cm-3. τv(?)self would be overestimated in the uniform magnetic field case. Only when N is larger than 104 cm-3, the optical depth of the self absorption can compare with one of gyroresonance absorption.
作者 周爱华
出处 《天文学报》 CSCD 北大核心 2005年第1期12-18,共7页 Acta Astronomica Sinica
基金 国家自然科学基金(10273025)资助
关键词 自吸收 共振吸收 高能电子 同步辐射 均匀磁场 能谱 极值 光学厚度 波数 下降 sun: radio radiation, radiation mechanisms: general, radiative transfer
  • 相关文献

参考文献10

  • 1Bastian T S, Benz A O, Gary D E. ARA&A, 1998, 36:131
  • 2Kai K. Publ Astron Soc Japan, 1965, 17:309
  • 3Takakura T, Scalise E Jr. Solar Phys, 1970, 11:434
  • 4Holt S S , Ramaty R. Solar Phys, 1969, 8:119
  • 5Takakura T. Solar Phys, 1972, 26:151
  • 6Benka S T, Holman G D. Ap J, 1992, 391:854
  • 7Benka S T, Holman G D. Ap J, 1994, 435:469
  • 8Holman G D. Ap J, 2003, 586:606
  • 9Fleishman G D, Melnicov V F. Ap J, 2003, 587:823
  • 10Ramaty R. Ap J, 1969, 158:753

同被引文献22

  • 1黄光力.日冕磁场和重联的射电信号[J].天文研究与技术,2006,3(2):99-112. 被引量:1
  • 2Fleishman G D, Melnikov V F. Optically thick gyrosynchrotron emission from anisotropic electron distributions. Astrophys. J., 2003, 584(1):1071-1083
  • 3Takakura T et al. Gyro-Synchrotron emission in a magnetic dipole field for the application to the Center-to- Limb variation of microwave impulsive bursts. Solar Phys., 1970, 11:434-455
  • 4Dulk G A, Marsh K A. Simplified expressions for the gyrosynchrotron radiation from mildly relativistic, nonthermal and thermal electrons. Astrophys. J., 1982, 259:350-358
  • 5Schmahl E J, Kundu M R, Dennis B R. Simultaneous imaging and spectral observations in microwaves and hard X-rays of the impulsive phase of a solar limb flare. Adv. Space Res., 1986, 6(6):143-146
  • 6Cairns I H, Mitchell J J, Knock S A, Robinson P A. Towards a quantitative theory for 2-3 kHz radio emission from beyond the heliopause. Adv. Space Res., 2004, 34(1):88-93
  • 7Petrosian V, Mctiernan J M. Emission, absorption and polarization of mildly relativistic particles. Phys. Fluids, 1983, 26(10):3023-3028
  • 8Petrosian V. Synchrotron emissivity from mildly relativistic particles. Astrophys. J., 1981, 251:727-738
  • 9Sakurai K. Gyrosynchrotron radiation and its transfer in a magnetoactive plasma. Astrophys. J., 1972, 174:135-149
  • 10Zhao Renyang et al. On the relation between the peak frequency and the corresponding rise time of solar microwave impulsive bursts and the height dependence of magnetic fields. Solar Phys., 1990, 130:361-368

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部