期刊文献+

完全二叉树模型中元素的CB秩 被引量:3

The CB Rank of the Elements in Complete Binary Trees
原文传递
导出
摘要 本文以完全二叉树理论的可量词消去为基础,介绍了该理论的可数原子模型 及饱和模型,并计算了一元、二元完全型的CB秩,从而给出了CB秩在该理论中的 几何解释. This article is based on the quantifier elimination of the theory of complete binary trees. The countable atomic model and saturated model are presented. We also calculate the CB rank of the types in one and two variables. Finally, the geometric meaning of CB rank in this theory is found.
作者 陈磊 沈复兴
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2005年第2期245-250,共6页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(60310213)
关键词 完全二叉树 原子模型 饱和模型 CB秩 Complete binary trees Atomic model Saturated model CB rank
  • 相关文献

参考文献6

  • 1Steven B., Essential stability, Berlin: Springer-Verlag, 1996.
  • 2Chang C. C., Keisler H. J., Model theory, North-Holland Publ. Co., 1990 (Third Edition).
  • 3Shen F. X., Introduction to Model theory, Beijing: Beijing Normal University Press, 1995 (in Chinese).
  • 4Wang S. Q., Foundations of Model theory, Beijing: Beijing Science Press, 1987 (in Chinese).
  • 5Liu J. Q., Liao D. S. and Lou L. B., Quantifier elimination for complete binary trees, Acta Mathematica Sinca,Chinese Series, 2003, 46(1): 95-102.
  • 6Chen L., Shen F. X., The Models and properties of the theory of complete binary tree, Journal of Beijing Normal University (Natural Science), 2004, 40(2): 177-180 (in Chinese).

同被引文献12

  • 1Marker D. Model Theory: An Interoduction. Springer-Verlag, 2002.
  • 2Wilfrid H. Model theory. Cambridge University Prass 1993.
  • 3Barwise X J and Feferman S. Model-theoretic Logic. New York Springer-Verleg 1985.
  • 4Schmerl J H. Coinductive No - Categorical Theorys. J.S.L 1990 Vol 55 No.3:1130-1137.
  • 5史念东.稳定性和单纯性理论,北京:科学出版社,2002.
  • 6Macpherson D and Schmerl J H. Binary Relational Structures having only Conutably many Nonisormorphic Substructures J.S.L 1991, vol 56 No.3:876-884
  • 7傅莺莺,沈复兴,吴茂念.完全分叉树理论可量词消去的新证明[J].南京大学学报(数学半年刊),2007,24(2):204-212. 被引量:2
  • 8Volker Weispfenning.Quantifier elimination for modules[J].Archiv für Mathematische Logik und Grundlagenforschung.1985(1)
  • 9William H. Wheeler.Amalgamation and elimination of quantifiers for theories of fields[J].Proceedings of the American Mathematical Society.1979(2)
  • 10李志敏,罗里波,李祥.完全二叉树理论的计算复杂度[J].数学学报(中文版),2008,51(2):311-318. 被引量:2

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部