期刊文献+

平面型氙准分子灯特性及其在降解水相枣红中的应用 被引量:1

The Characteristics of the Planar Xe Excimer Lamp and its Applications in Degradation of Claret Dye in Water
原文传递
导出
摘要 研究了平面型氙准分子灯的真空紫外(VUV)辐射特性,电源电压、频率和充气压强对辐射强度和效率均有影响.研究表明在正弦电压驱动下,充气压3×104Pa左右时有最佳辐射强度和效率.在本实验中用于水处理实验的氙准分子灯参数为电压4kV,频率20kHz,气压3.8×104Pa,对应的辐射功率为25.4mW(光子流量2.2×10-6einstein·min-1).选用偶氮类染料枣红作为被分解物质,发现氙准分子灯的172nm辐射能够有效地使枣红解离,解离反应呈准一级反应,解离速率为9.28×10-8mol·min-1,光量子产额4.2×10-2mol·einstein-1.有机物初始浓度、溶液pH值、光强等都会对解离率产生影响.在氙准分子灯和反应溶液不直接接触时,发现解离率和COD(化学需氧量)去除率并不一直随着光强增加而增大,而有一最佳值. The vacuum ultraviolet (VUV) characteristic of planar Xe excimer lamp is studied. It is found that VUV intensity and efficiency of the Xe excimer lamp studied depend on many parameters including applied voltage, frequency, and gas pressure as well. When the lamp is driven by sinusoidal voltage, the optimum filling pressure corresponding to the maximum VUV radiation intensity and efficiency is about 3×10~4 Pa. The optimized parameters of the lamp for water treatment are found to be: voltage 4 kV, frequency 20 kHz, pressure 3.8×10~4 Pa while the radiation power of the lamp is 25.4 mW (equal to photon flow of 2.2×10^(-6) einstein·min^(-1)). The VUV radiation has proven to be an effective method to degrade claret which is a representive azo dye. Observations show that the decolorization of claret is of pseudo-first-order kinetics. The rate of disappearance of claret is 9.28×10^(-8) mol·min^(-1) and the quantum yield is 4.2×10^(-2) mol·einstein^(-1). Many factors such as initial concentration of organic substrate, the pH of the solution and VUV internsity affect the decolorization rate. When a thin air layer exists between the surface of the lamp and water solution, the effciency of decolorization and COD removal do not increased linearly with the radiation intensity but are optimized at certain VUV intensity.
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2005年第1期111-117,共7页 Journal of Fudan University:Natural Science
关键词 解离反应 分子 水相 光强 产额 光子流 最佳值 影响 光量子 发现 Xe excimer lamp VUV intensity VUV efficiency rate of decolorization COD removal
  • 相关文献

参考文献12

  • 1Kogelschatz U. Dielectric-barrier discharge: Their history, discharge physics, and industrial applications [J]. Plasma Chem Plasma P, 2003, 23: 1-46.
  • 2Gellert B, Kogelschatz U. Generation of excimer in dielectric barrier discharges [J]. Appl Phys B, 1991, 52(1): 14-21.
  • 3Eliasson B, Kogelschatz U. Modeling and applications of silent discharge plasmas [J]. IEEE T Plasma Sci, 1991, 19(2):309-323.
  • 4Mildren R P, Carman R J. Enhanced performance of a dielectric barrier discharge lamp using short-pulsed excitation [J]. J Phys D: Appl Phys, 2001, 34(1):L1-L6.
  • 5Eliasson B, Kogelschatz U. UV excimer radiation from dielectric-barrier discharges [J]. Appl Phys B, 1998, 46:299-303.
  • 6Hashem T M, Zirlewagen M, Braum A M. Simultaneous photochemical generation of ozone in the gas phase and photolysis of aqueous reaction systems using one VUV light source [J]. Wat Sci Technol, 1997, 35(4):41-48.
  • 7Baum G, Oppenlander T. Vacuum-UV-oxidation of chloroorganic compounds in an excimer flow-through photoreactor [J]. Chemosphere, 1995,30(9):1781-1790.
  • 8Gibalov V I, Pietsch G J. The development of dielectric barrier discharges in gas gaps and on surfaces [J]. J Phys D: Appl Phys, 2000, 33(20): 2618-2636.
  • 9Falkenstein Z, Coogan J J. The development of a silent discharge-driven XeBr· excimer UV light source [J]. J Phys D: Appl Phys, 1997, 30(19): 2704-2710.
  • 10Oppenlander T, Gliese S. Mineralization of organic micropollutants (homologous alcohols and phenols) in water by vacuum-UV-oxidation (H2O-VUV) with an incoherent xenon-excimer lamp at 172 nm [J]. Chemosphere, 2000, 40(91): 15-21.

同被引文献36

  • 1冯祥芬,侯惠奇,朱绍龙.172nm真空紫外辐射降解水相有机染料的机理研究[J].环境科学学报,2005,25(6):749-755. 被引量:8
  • 2邵辉丽,朱燕舞,佘磊,李交美.^(202)Hg高频无极汞灯的发光机理和研制方法[J].上海工程技术大学学报,2006,20(1):8-10. 被引量:3
  • 3冯祥芬,侯惠奇,朱绍龙.172nm辐射降解恶臭气体二硫化碳的研究[J].化学世界,2006,47(5):257-259. 被引量:5
  • 4邵春雷,夏兰艳,顾丁红,张仁熙,侯惠奇.微波无极灯光解模拟CS_2废气[J].环境科学,2007,28(7):1627-1631. 被引量:11
  • 5Revalde G, Skudra A. Optimization of mercury vapour pressure for the high - frequency electrodeless light source [ J ]. J. Phys. D :Appl. Phys, 1998,31 : 3343-3348.
  • 6Koehler H A,Ferderber L J,Redhead D L,et al. Vacuum-ultraviolet emission from high pressure xenon and argon excited by highcurrent relativistic electron beams[J]. Phys. Rev. A, 1974,9: 768-781.
  • 7Millet P,Biret A,Brunet H,et al. Time resolved study of the UV and near UV continuums of xenon[ J ]. J. Chem. Phys, 1978,69 : 92.-97,
  • 8Brodmann R, Zimmerer G. Vacuum-ultraviolet fluorescence under monochromatic excitation and collision processes in gaseous Kr and Xe[J]. J. Phys. B: Atom Molec Phys,1977,10:3395-3408.
  • 9Wieme W and Lenaerts J. Excimer formation in argon, krypton and xenon discharge afterglows between 200 and 400K[J]. J. Chem. Phys, 1981,74:483-493.
  • 10Calloway A R, Galantowlcz T A, Fenner W R. Vacuum ultraviolet driven chemical vapor deposition of localized aluminum thin films [J]. J. Vac. Sci. Techin. A, 1983,1:534-536.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部