期刊文献+

基于消息传递的数据交错重分布负载平衡技术

Load balancing method with interleaving redistributed data based on message passing interface
下载PDF
导出
摘要 数据重分布是实现消息传递环境下负载平衡的重要手段,提出了数据交错分布的模型问题及模型问题的并行计算模型,分析了模型问题在消息传递环境下的实现,讨论了性能和适用条件,给出了分析结果,讨论了通信与计算的时间重叠问题,将数据交错重分布负载平衡技术应用到非平衡刚性动力学方程组的并行计算中,获得了很好的负载平衡效果。 Data redistributing is the key technique to implement the load balancing in parallel programming based on message passing interface. A load balancing method with interleaving redistributed data suitable for message passing parallel computing environments is presented to solve the load imbalance problem arising from the parallel numerical simulation of non-balance dynamic equations to simulate non-balance phenomenon of radiation. At first, a load imbalance model is designed to describe the mam characteristic of the physical problems. For this model, the defined domain is uniformly differenced into grid cells, and every grid cell is assumed to process in different CPU time that can't be predicted by using the history information. Secondly, a load balancing method with interleaving redistributed data is presented. Next, an parallel model is given to analyse the performance of the new load balancing method. In the last, the new load balancing method is applied to the parallel numerical simulation of non-balance dynamic equations, and the performance is improved about 20%.
出处 《计算机工程与设计》 CSCD 北大核心 2005年第2期312-314,319,共4页 Computer Engineering and Design
基金 "十五"武器装备预研和计算物理国家重点实验室基金项目(2000JS76.4.1KG0119)。
关键词 消息传递 负载平衡 数据 并行计算模型 通信 性能 问题 非平衡 技术 环境 load balancing redistributed data message passing interface parallel computing
  • 相关文献

参考文献11

  • 1刘杰,胡庆丰,韩国兴,迟利华.分布式存储环境下非平衡刚性方程组的数值并行计算[J].计算物理,2002,19(1):86-88. 被引量:6
  • 2Lan Z,Taylor E,Bryan G.Dynamic load balance of SAMR applications on distributed systems[EB/OL].2001-12.http:∥www.sc2001 .org/.
  • 3Gan C,Stadtherr.Parallel interval-newton using message pas sing: dynamic load balancing strategies[EB/OL].SC2001.http:∥www.sc2001 .org/,Nov.2001.
  • 4Lan Z,Taylor E,Bryan G.A novel dynamic load balancing scheme for parallel systems[J].Parallel Distrib Comput,2002,62(4):1763-1781.
  • 5Zomaya A Y,Teh Y H.Observations on using genetic algorithms for dynamic load-balancing[J].IEEE transactions on parallel anddistributed systems,2001,12(9): 899-911.
  • 6Boleng J,Misra M.Load balanced parallel QR decomposition on shared memory multiprocessors[J].Parallel Computing,2001,27(3): 1321-1345.
  • 7Das S K,Harvey D J,Biswas R.Parallel processing of adaptive meshes with load balancing [J].IEEE Transactions on Parallel and Distributed Systems,2001,12(12): 1269-1279.
  • 8刘杰,迟利华,胡庆丰,李晓梅.求解非对称线性方程组的QMRGCGS方法[J].高等学校计算数学学报,2003,25(2):175-183. 被引量:2
  • 9韩国兴.非平衡刚性动力学方程组的块迭代法和并行算法[C]..第六届全国计算数学年会论文集[C].,1999..
  • 10莫则尧.一维高效动态负载平衡方法:多层均权法[J].计算机学报,2001,24(2):183-190. 被引量:10

二级参考文献13

  • 1莫则尧,李晓梅.工作站网络环境下的并行计算[J].计算机学报,1997,20(6):510-517. 被引量:32
  • 2韩国兴.非平衡刚性动力学方程组的块迭代法和并行算法.第六届全国计算数学年会论文集[M].,1999..
  • 3Fokkema, D. R., Sleijpen, G. and Van der Vorst, H. A.. Generalized conjugate gradient squared.J. Gomput. Appl. Math., 1996, 71:125-146.
  • 4Freund, R. W.. A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems. SIAM J. Sci. Comput., 1993, 14:470-482.
  • 5Fletcher, R.. Conjugate gradient methods for indefinite systems. In: Watson, G. A. ed. Lecture Notes in Mathematics 506. Berlin: Springer-Verlag, 1976:73-89.
  • 6Van der Vorst, H. A.. BiCGSTAB: A fast and smoothly converging variant of BiCG for the solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 1992, 13:631-644.
  • 7Chan, T.F., Gallopolulos, E., Simonicini, V., Szeto, T. and Tong, C.H.. QMRCGSTAB: A quasi-minimal residual variant of the BiCGSTAB algorithm for nonsymmetric systems. Center for Supercomputing Research and Development Report 1231, University of Illinois at Urbana-Champaln, 1992.
  • 8Sonneveld, P.. CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci.Statist. Comput., 1989, 10:36-52.
  • 9Freund, W., and Nachtigal, N. M.. QMR: A quasi -minimal residual method for non-Hermitian linear systems. Numer. Math., 1991, 60:315-339.
  • 10Duff Grimes, R. G. and Lewis, J. G.. User's guide for the Harwell-Boeing sparse matrix collection (Released 1). Rutherford Appleton Laboratory, Chilton,UK: Tech Report RAL-92-086, 1992.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部