期刊文献+

基于属性链表的关联规则格的渐进式构造算法 被引量:6

Incremental algorithm for building association rule lattice based on attribute linked-list
下载PDF
导出
摘要 作为数据挖掘核心任务之一的关联规则发现已经得到了广泛的研究。而由二元关系导出的概念格则是一种非常有用的形式化工具,非常适于发现数据中潜在的概念。分析了概念格与关联规则提取之间的关系,根据需要对格结构进行了相应的修改,提出了关联规则格的概念,并提出属性链表这种数据结构,基于这种链袁提出了关联规则格的渐进式构造算法。通过对算法进行分析,得出了比Godin算法更好的时间效率。 Association rule discovery, as a kernel task of data mining, has been studied widely. Concept lattice, induced from a binary relation between objects and features , is a very useful formal tool and is fit for discovering the potential concept below the data. The relationship between concept lattice and association rule discovery is analyzed. The structure of node in lattice is modified according to the requirement and the conception of association rule lattice and the data structure of attribute linked-list are put forward. Based on this kind of linked-list, the incremental algorithm for building association rule lattice is put forward. The algorithm is analyzed with a better efficiency than godin algorithm.
出处 《计算机工程与设计》 CSCD 北大核心 2005年第2期320-322,331,共4页 Computer Engineering and Design
基金 河北省自然科学基金项目(600225)。
关键词 关联规则 链表 概念格 构造算法 数据挖掘 属性 数据结构 二元关系 格结构 种数 concept lattice intension reduction association rule lattice attribute linked-list
  • 相关文献

参考文献11

  • 1[1]Bordat J P.Calcul pratique du treillis de galois d′une correspondence[J].Mathematiq-ues at Sciences Humaines,1986,96(2):31-47.
  • 2[2]GodinR,Missaoui R.An incremental concept formation approach for learning from databases[J].Theoretical Computer Science,1994,133(5):387-419.
  • 3[3]Godin R,Missaoui R,Alaoui H.Learning algorithms using a galois lattice structure[C].San Jose:IEEE Computer Society Press,1991.22-29.
  • 4[4]Robert Godin,Rokia Missaoui,Hessian Alaoui.Incremental concept formation algorithms based on Galois (concept) lattices [J].Computational Intelligence,1995,11(2):246-267.
  • 5[5]Nourine L,Raynaud O.A fast algorithm for building lattices[J].Information Processing Letters,1999,71 (5-6): 199-204.
  • 6谢志鹏,刘宗田.概念格的快速渐进式构造算法[J].计算机学报,2002,25(5):490-496. 被引量:120
  • 7谢志鹏,刘宗田.概念格与关联规则发现[J].计算机研究与发展,2000,37(12):1415-1421. 被引量:97
  • 8[8]Agrawl Retal.Mining association rules between sets of items in large databases[C].Washington: Proc ACMSIGMOD Int′l Confon Management of Data,1993.207-216.
  • 9[9]Wille R.Knowledge acquisition by methods of formal concept analysis[M].New York: Nova Science Publisher,1989.365-380.
  • 10[10]Osthuizen G D.Rough sets and concept lattices[C].London:Springer-Verlag,1994.24-31.

二级参考文献12

  • 1Cheung D W,Proc of 1996 Int’l Conf on Data Engineering (ICDE’96 ),1996年
  • 2Carpineto C, Romano G. Information retrieval through hybrid navigation of lattice representations. International Journal of Human-Computer Studies, 1996, 45: 553-578
  • 3Carpineto C, Romano G. A lattice conceptual clustering system and its application to browsing retrieval. Machine Learning, 1996, 24(2):95-122
  • 4Godin R, Mineau G W, Missaoui R. Incremental structuring of knowledge bases. In: Proc International Symposium on Knowledge Retrieval, Use, and Storage for Efficiency(KRUSE'95), Santa Cruz, 1995. 179-193
  • 5Godin R, Missaoui R, Alaoui H. Incremental concept formation algorithms based on Galois (concept) lattices. Computational Intelligence, 1995, 11(2):246-267
  • 6Godin R, Mili H, Mineau G W et al. Design of class hierarchies based on concept (Galois) lattices. Theory and Application of Object Systems, 1998, 4(2):117-134
  • 7Nourine L, Raynaud O. A fast algorithm for building lattices. Information Processing Letters, 1999, 71(5-6):199-204
  • 8Snelting G, Tip T. Reengineering class hierarchies using concept analysis. In: Proc ACM SIGSOFT Symposium on the Foundations of Software Engineering, Lake Buena Vista, Frorida, USA, 1998. 99-110
  • 9Wille R. Restructuring lattice theory: An approach based on hierarchies of concepts. In: Rival I eds. Ordered Sets, Dordrecht: Reidel, 1982. 445-470
  • 10Xie Z, Liu Z. Research on classifier based on lattice structure. In: Proc Conference on Intelligent Information Processing, 16th World Computer Congress, Beijing, China, 2000. 333-338

共引文献193

同被引文献38

引证文献6

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部