期刊文献+

具有非单调功能反应和脉冲扰动的捕食系统的研究 被引量:1

THE STUDY OF PREDATOR-PREY SYSTEM WITH NON-MONOTONIC FUNCTIONAL RESPONSE AND IMPULSIVE PERTURBATIONS
下载PDF
导出
摘要 研究捕食者具有非单调功能反应和周期脉冲扰动的捕食者 食饵系统,利用脉冲微分方程的Floquet理论和比较定理, 得到了系统灭绝和持续生存的充分条件. 最后, 通过数值模拟阐明系统在周期脉冲扰动下的复杂性. We investigate the predator-prey system with non-monotonic functional response and periodic impulsive perturbations on the predator. By using the Floquet theory of impulsive equation and comparison theorem, sufficient conditions for the system to be extinct and permanence are given. Lastly, use the numerical simulation to illustrate the complexity of the system resulted from the periodic impulsive perturbation.
作者 谭德君
出处 《数学杂志》 CSCD 北大核心 2005年第2期210-216,共7页 Journal of Mathematics
关键词 捕食者-食饵系统 脉冲 复杂性 混沌 predator-prey system impulsive complexity chaos
  • 相关文献

参考文献12

  • 1陈兰荪 井竹君.捕食者-食饵相互作用中微分方程的极限环存在性和唯一性.科学通报,1984,:29-523,521.
  • 2Wang W, Chen L. A predator-prey system with stage structure for predator[J]. Computers Math Applic, 1997,33 : 83- 91.
  • 3Xiao Y, Chen L. Modeling and analysis of a predator-prey model with disease in the prey[J]. Math Biosci, 2001,171:59-82.
  • 4Ruan S, Xiao D. Global analysis in a predator-prey system with nonmonotonic functional response[J]. SIAMJ Appl Math,2001,61:1445-1472.
  • 5F. Brauer, A. C. Soudack. Constant-rate stocking of predatorprey systems[J]. J Math Biol. 1981,11:1-14.
  • 6B. Shulgin, L. Stone, Z. P. Agur. Pulse vaccination strategy in the SIR epidemic model[J]. Bull Math Biol. 1998,44 : 203-224.
  • 7A. Lakmeche, O. Arino. Birfurcation of non-trivial periodic solutions of impusive differetial equations arising chemotherapeutic treament [J]. Dynamics of Continous, Discrete and Impulsive Systems.2000,7:265-287.
  • 8M. G. Roberts, R. R. Kao. The dynamics of an infectious disease in a population with birth pulses[J]. Math Biosci. 1998,149:23-36.
  • 9S. Tang,L. Chen. Density-dependent birth rate, birth pluses and their population dynamic consequences[J]. Math Bio. 2002,44 : 185-199.
  • 10V. Lakshmikantham, D. Bainov, P. S. Simeonov. Theory of impulsive differential equations[M].Singapore:World Scientific, 1989.

共引文献14

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部