期刊文献+

带机会约束的动态投资决策模型研究 被引量:9

Research on a Dynamic Investment Decision Model with Constraint of Investment Chance
下载PDF
导出
摘要 本文在Black Scholes型市场中 ,建立了具有投资机会约束的CaR动态投资决策模型 :minx∈RdCaR(x ,π ,T) s t Prob(Xπ(T)≥R)≥β ,其中x是初始财富 ,π(t) =(π1(t) ,… ,πd(t) )′∈Rd 为可行的证券组合过程 ,Xπ(T)为计划期末的财富水平 ,CaR(x ,π ,T)为投资期末的在险资本 ,R是投资者事先给定的某正的财富水平 ,0 <β <1 通过对该模型的讨论 ,得到了最优常数再调整策略的显式表达式 ,其金融学含义包括 :对于机会约束下的动态投资组合 ,在风险中性市场中 ,最优的常数再调整投资策略是纯债券投资策略 ,最优的在险资本值为零 ;在风险非中性市场中 。 In Black-Scholes type financial markets,the CaR dynamic portfolio decision model with constraint of investment chance is established as following: minx∈R^dCaR(x,π,T) s.t.Prob(X~π(T)≥R)≥β, where x is the initial wealth,π(t)=(π_1(t),...,π_d(t))′∈R^d is the process of feasible portfolio,X~π(T)is the terminal wealth,R is a positive wealth level given by investor and 0<β<1.The explicit solutions for this model are obtained in terms of the optimal constant rebalance strategy.The financial interpretations of the results include that,for portfolio decision with constraint of investment chance,the optimal constant rebalance strategy is pure bond investment strategy and the optimal Capital-at-Risk is zero in neutral risk markets,and the optimal constant rebalance strategy implies the mutual fund theorem in non-neutral risk markets.
出处 《中国管理科学》 CSSCI 2005年第1期9-13,共5页 Chinese Journal of Management Science
基金 国家自然科学基金资助项目 (A0 32 46 2 7)
关键词 在险资本 机会约束 动态投资组合 常数再调整策略 Capital-at-Risk(CaR) constraint of investment chance dynamic portfolio constant rebalance strategy
  • 相关文献

参考文献6

二级参考文献25

  • 1刘庆伟,彭大衡.投资机会与VaR约束下的投资组合分析[J].经济数学,2002,19(4):85-89. 被引量:20
  • 2程仕军.极大化证券组合的投资收益率[J].系统工程,1994,12(4):7-10. 被引量:8
  • 3朱玉旭,黄洁纲.最小方差组合证券集及其特性分析[J].系统工程理论方法应用,1996,5(2):52-60. 被引量:10
  • 4阿佛里耳M.非线性规划-分析与方法[M].上海:上海科学技术出版社,1979..
  • 5HARLOW W. Asset allocation in a downside-risk framework[J]. Financial Anal J,1991(9):28-40.
  • 6FISHBURN P C. Mean-risk analysis with risk associated with below-target returns[J].Am Econ Rev, 1997(67):116-126.
  • 7EMMER S, KLPPELBERG C, KORN R. Optimal portfolios with bounded capital at risk[J].Mathematical Finance, 2001,11(4):365-384.
  • 8Avriel M. Nonlinear Programming: Analysis and Methods, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1976.
  • 9Basak S., Shapiro A. "Value-at-Risk-based risk management: optimal policies and asset prices". The Review of Financial Studies 14, 371-405,2001.
  • 10Chen A., Jen C., Zionts S. "The optimal portfilio revision policy", Journal of Business 44, 51-61, 1971.

共引文献106

同被引文献50

  • 1刘庆伟,彭大衡.投资机会与VaR约束下的投资组合分析[J].经济数学,2002,19(4):85-89. 被引量:20
  • 2朱书尚,李端,周迅宇,汪寿阳.论投资组合与金融优化——对理论研究和实践的分析与反思[J].管理科学学报,2004,7(6):1-12. 被引量:38
  • 3EMMER S, KLUPPELBERG C, KORN R. Optimal portfolios with bounded capital at risk[J]. Math. Finance, 2001,11(4) :365-384.
  • 4Charnes A, Cooper W W. Chance-constrained programming[J]. Management Science, 1959,6 (1) : 73-79.
  • 5[1]Markowitz H . Portfolio selection [J]. Finance 1952.7:77-91.
  • 6[2]Merton R. Lifetime Portfolio selection under uncertainty:the continuous-time case[J]. Rev. Econ. Statistics 1969:247-257.
  • 7[3]Merton R.Optimum consumption and portfolio rules in a continuous time model[J]. Econ theory , 1971,3:373-413.
  • 8[4]Samuelson . P.A.Lifetime portfolio selection by dynamic stochastic programming[J]. Rev.Econ. Theory, 1969,51:239-246.
  • 9[5]Zhou X Y,Li D. Continuous-time mean-variance portfolio selection: a stochastic LQ framework[J]. Applied Mathematics and Optimization, 2000,(42):19-33.
  • 10[6]Emmer S , Klupelberg C,Korn R. Optimal portfolio with bounded caoital -at-risk [J]. Mathematical Finance,2001,11:365-384.

引证文献9

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部