期刊文献+

应用神经网络对精煤灰分含量进行实时预报 被引量:6

Real Time Prediction of Ash Content of Clean Coal Using Neural Network
下载PDF
导出
摘要 针对具有不确定性、时变性和复杂非线性关系的跳汰选煤过程,提出了精煤产品灰分含量的新型实时多步预测方法.本文基于Jordan神经网络构造了具有多作用因素输入和灰分含量动态时间序列反馈的实时动态建模预测模型,提出了BP算法和TD法相结合的网络学习新算法.该方法比传统预测方法具有更好的收敛性和适应性.应用结果表明,预测命中率和预测精度较高. A novel real-time and multi-step predicting scheme of ash content of clean coal is proposed based on time-variation, uncertainty and complicated nonlinear relations in jigging process. A real-time and dynamic predicting model based on Jordan neural network including input of influence factors and dynamic time sequence feedback of ash content of clean coal was established. A new learning algorithm is proposed by combining the temporal difference methods with BP algorithm, which has better astringency and adaptability than the traditional predictive methods. The results applied in industry indicate that the predictive precision is quite high.
出处 《中国矿业大学学报》 EI CAS CSCD 北大核心 2005年第2期194-197,共4页 Journal of China University of Mining & Technology
基金 国家自然科学基金项目(60304016)
关键词 精煤灰分 跳汰选煤 预测精度 BP算法 预测方法 构造 神经网络 多步预测 新算法 建模 neural network multi-step dynamic prediction time series BP algorithm TD method
  • 相关文献

参考文献6

  • 1孙伟,杨东平,岳东,程玉虎.焦炉集气管压力系统智能控制策略[J].中国矿业大学学报,2000,29(5):503-505. 被引量:10
  • 2孙伟,谭得健,许世范.基于神经元预报模型的过热汽温过程控制[J].中国矿业大学学报,1998,27(1):72-75. 被引量:2
  • 3Sun W, Gong D W, Wang X S. Process out-of-control cause diagnosis of coal preparation plant based on fuzzy pattern recognition[A]. Proceedings of The 3RD World Congress on Intelligent Control and Automation[C]. Hefei: Press of University of Science and Technology of China,2000. 670-672.
  • 4Sun W, Cheng Y H, Xu S F. A kind of NN form presentation and disposal of experience control rule[A]. Proceedings of The 3RD World Congress on Intelligent Control and Automation[C]. Hefei: Press of University of Science and Technology of China,2000. 836-838.
  • 5Sun W, Wang X S, Xu S F. A neural network fuzzy comprehensive evaluation for evaluating economic benefit of business firm[A]. Proceedings of The 3RD World Congress on Intelligent Control and Automation[C]. Hefei: Press of University of Science and Technology of China, 2000. 1119-1121.
  • 6Sutton R S. Learning to predict by the methods of temporal difference[J]. Machine Learning, 1988(3) :9-44.

二级参考文献9

共引文献10

同被引文献34

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部