期刊文献+

基于满意域和禁忌域的交互式遗传算法 被引量:14

Interactive Genetic Algorithm Based on Landscape of Satisfaction and Taboos
下载PDF
导出
摘要 针对交互式遗传算法中用户易疲劳问题,提出求同算子与求异算子,基于此给出搜索空间的划分及演化方法,提出基于满意域和禁忌域的交互式遗传算法,该方法可以引导遗传算法在不断缩小的空间中产生新个体,从而提高收敛速度,减少进化代数,达到减轻用户疲劳的目的.利用此方法进行服装设计的实验结果表明,该方法可以有效解决用户疲劳问题. The concept of landscape of satisfaction and taboos are given aiming on the problem of user fatigue in interactive genetic algorithm(IGA). The common operator and distinct operator are proposed, and the methodology of search space partition and evolution is presented. The interactive genetic algorithm based on landscape of satisfaction and taboos is put forward. The algorithm can produce new individuals in continually shrinking space. Hence, the convergence is speeded, the evolution time is reduced and user fatigue is alleviated. The experimental results from fashion design show that this method is efficient.
出处 《中国矿业大学学报》 EI CAS CSCD 北大核心 2005年第2期204-208,共5页 Journal of China University of Mining & Technology
基金 国家自然科学基金项目(60304016)
关键词 交互式遗传算法 有效解 算子 收敛速度 搜索空间 代数 缩小 用户 问题 减轻 interactive genetic algorithm landscape of satisfaction and taboos gene unit of sense common operator and distinct operator
  • 相关文献

参考文献8

  • 1Takagi H. Interactive evolutionary computation:Fusion of the capabilities of EC optimization and human evolution [C]. San Diegot Proceedings of the IEEE, 2001. 1275-1296.
  • 2Kim H S, Cho S B. Application of interactive genetic to fashion design [J]. Engineering Applications of Artificial Intelligence, 2000,13(6) : 635-644.
  • 3Tokui N, Iba H, Music composition with interactive evolutionary eomputation[C]. Milan: Proceedings of the 3rd International Conference on Generative Art,2000. 215-226.
  • 4Morita T, Iba H, Ishizuka M. Generating emotional voice and behavior expression by interactive evolutionary computation [ C ]. Yokohama:Proceedings of the 62nd Annual Meeting of Japan Society for Information Processing, 2001.45-46.
  • 5Iwasaki T, Kimura A, Todoroki Y, et al. Interactive virtual aquarium [C]. Gifu: Proceedings of the 5th Annual Conference of the Virtual Reality Society of Japan, 2000. 141-144.
  • 6Ohsaki M, Takagi H, Ohya K. An input method using discrete fitness values for interactive GA [J].Intelligence Fuzzy System, 1998,6(6) : 131-145.
  • 7Takagi H, Unemi T, Terano T. Perspective on interactive evolutionary computing [J]. Artificial Intelligence, 1998,13(5) :692-703.
  • 8Takagi H, Ohya K, Ohsaki M. Improvement of input interface for interactive genetic algorithms and its evaluation [C]. Zukav: Methodologies for the Conception, Design, and Application of Intelligent Systems proceedings, 1996.490-493.

同被引文献88

引证文献14

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部