期刊文献+

群速度控制格式及二维Riemann解 被引量:2

Group velocity control scheme and two-dimensional riemann solver
下载PDF
导出
摘要 强激波和强接触间断的数值模拟一直是计算流体力学里一个富有挑战性的课题,它们是很多实际流动的基础。三阶迎风紧致格式是一种具有较高分辨率的高精度方法,但是在计算激波时仍有数值振荡产生。本文根据数值解的群速度特性,在三阶迎风紧致格式的基础上提出了一种群速度控制格式,使得能够正确模拟含有强激波和强接触间断的复杂流动。在此基础上构造了求解包含大压力比和密度比的二维界面问题的数值方法。计算结果表明,方法对激波和接触间断的分辨效果是令人满意的。 It is a challenging work to simulate flows with strong shock waves and contact discontinuities in the field of computational fluid dynamics, which are the basic elements of many practical flows. The 3rd order upwind compact scheme is of the character of high precision and high resolution, but numerical oscillation occurs when it is used to simulate shock waves. According to the characters of group velocity, a group velocity control (GVC) scheme was constructed based on the 3rd order upwind compact scheme, which can simulate the complex flows with strong shock waves and contact discontinuities correctly. Based on the GVC scheme, a numerical solver was constructed to simulate two-dimensional interface problems of high pressure ratio and high density ratio. Numerical results show that it is an effective method to identify shock waves and contact discontinuities.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2005年第1期104-108,共5页 Chinese Journal of Computational Mechanics
基金 863项目"激波与流体界面间不稳定性特征研究"(863-804-1-8-4)资助项目.
关键词 紧致格式 群速度控制 二维Riemann问题 Computational fluid dynamics Computer simulation High pressure effects Oscillations Shock waves Two dimensional
  • 相关文献

参考文献12

  • 1Fu D X, Ma Y W. A high order accurate difference scheme for complex flow fields[J]. J Comput Phys,1997,134:1-15.
  • 2Lele S K. Compact finite difference schemes with spectral-like resolution[J]. J Comput Phys,1992,13:16-42.
  • 3Trefethen L N. Group velocity in finite differenceschemes[J]. SIAM Review,1982,24(2):113-136.
  • 4Ma Yanwen, Fu Dexun.Fourth order accurate com-pact scheme with group velocity control(GVC)[J]. Science in China Series A, 2001,(6):554-561.
  • 5Yee H C, Warming R F, Harten A. Implicit total variation diminishing schemes (TVD) for steady state calculations[J]. J Comp Phys, 1985,57:327-360.
  • 6Harten A, Osher S. Uniformly high-order accurate nonoscillatory schemes[J]. I SIAM J Num Anal, 1987,24:279-309.
  • 7Brio M, et al. Two-dimensional Riemann solver for Euler equations of gas dynamics[J]. J Comput Phys,2001,167:177-195.
  • 8Harten A, Engquist B, Chakravarthy S R. Unifor-mly high order accurate essentially non-osillatory schemes, III[J]. J Comput Phys,1987,71:231-303.
  • 9Le Veque. Wave propagation algorithms for multi-dimensional hyperbolic systems[J]. J Comput Phys, 1998,143.
  • 10Rezzolla B L, Zanotiti O. An improved exactRiemann solver for relativistic hydrodynamics[J]. J Fluid Mech, 2001,449:395-411.

同被引文献7

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部