摘要
针对一类具有状态时滞的不确定时滞广义系统,基于状态反馈研究了保成本弹性控制问题·利用线性矩阵不等式(LMI)处理方法,得到了闭环时滞广义系统广义二次稳定以及闭环成本函数值有上界的充分条件;进一步利用LMI的可行解给出了保成本弹性控制器的设计方法·设计的弹性控制器使得闭环时滞广义系统广义二次稳定,同时保证闭环成本函数值具有上界·最后的数值例子说明了所给方法的有效性·
The problem of guaranteed cost resiliently control was studied via memoryless state feedback for a class of uncertainty singular systems with state delay. The sufficient condition is given in term of linear matrix inequalities (LMIs), under which the resultant closed-loop descriptor systems are of not only the quadratic stabilization but the upper bound of the cost function. Moreover, the guaranteed cost resiliently controller can be obtained in terms of the solutions to LMIs. The designed resiliently controller can make the closed-loop systems generalized quadratic stability and the closed-loop cost function value has an upper bound. An example is given to illustrate the effectiveness of the proposed method.
出处
《东北大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2005年第3期213-216,共4页
Journal of Northeastern University(Natural Science)
基金
辽宁省普通高校学科带头人基金资助项目(124210).
关键词
广义系统
时滞
保成本控制
弹性控制器
二次稳定
线性矩阵不等式
singular system
time-delay
guaranteed cost control
resiliently controller
quadratic stabilization
LMI