期刊文献+

RESEARCH ANNOUNCEMENTS Structure of Solvable Quadratic Lie Algebras 被引量:1

RESEARCH ANNOUNCEMENTS Structure of Solvable Quadratic Lie Algebras
下载PDF
导出
摘要 Killing form plays a key role in the theory of semisimple Lie algebras. It is natural to extend the study to Lie algebras with a nondegenerate symmetric invariant bilinear form. Such a Lie algebra is generally called a quadratic Lie algebra which occur naturally in physics^[10,12,13]. Besides semisimple Lie algebras, interesting quadratic Lie algebras include the Kac-Moody algebras and the Extended Affine Lie algebras. In this paper, we study solvable quadratic Lie algebras. In Section 1, we study quadratic solvable Lie algebras whose Cartan subalgebras consist of semi-simple elements. In Section 2,we present a procedure to construct a class of quadratic Lie algebras, and we can exhaust all solvable quadratic Lie algebras in such a way. All Lie algebras mentioned in this paper are finite dimensional Lie algebras over a field F of characteristic 0.
作者 朱林生
出处 《数学进展》 CSCD 北大核心 2005年第1期117-120,共4页 Advances in Mathematics(China)
基金 ThisworkissupportedbytheNationalNaturalScienceFoundationofChinaandtheFoundationalofJiangsuEducationalCommittee.
  • 相关文献

参考文献14

  • 1Allison B N, Azam S, Berman S, Gao Yun, Pianzola A. Extended affine Lie algebras and their root system[J]. Memo. Amer. Math. Soc. 603.
  • 2Benayadi S. A new characterization of semisimple Lie algebras [J]. Proc. Amer. Math. Soc., 1997, 125:685.
  • 3Benayadi S. Structures de certaines algebres de Lie quadratiques [3]. Comm. in Algebras, 1995, 23(10),3867-3887.
  • 4Bordemann M. Nondegenerate invariant bilinear forms on nonassociative algebras [J]. Acta Math. Univ. Comenianae 1997, LXVI(2), 151-201.
  • 5Bourbaki N. Groupes et Algebres de Lie, Ch.I [M]. Hermann, Paris, 1960.
  • 6Favre G, Santhroubane L J. Symmetric, Invariant, Non-degenerate Bilinear Form on a Lie Algebra [J]. J .Algebra, 1987, 105: 451-464.
  • 7Figueroa-O'Farrill J S, Stanciu S. On the structure of symmetric self-dual Lie algebras [J]. J. Math. Phys.,1996, 37(8): 4121-4134.
  • 8Kac V G. Infinite Dimensional Lie Algebras (3rd, ed) [M]. Cambridge Univ. Press, 1990.
  • 9Medina A, Revoy Ph. Algebres de Lie et produit scalarie invariant [J]. Ann. Sci. Ecl. Norm. Sup. 1985,18(533): 553-561.
  • 10Mohammedi N. On bosonic and supersymmetric current algebras for nonsemisimple group [J]. Phys. Lett. B, 1994, 325: 371.

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部