摘要
Killing form plays a key role in the theory of semisimple Lie algebras. It is natural to extend the study to Lie algebras with a nondegenerate symmetric invariant bilinear form. Such a Lie algebra is generally called a quadratic Lie algebra which occur naturally in physics^[10,12,13]. Besides semisimple Lie algebras, interesting quadratic Lie algebras include the Kac-Moody algebras and the Extended Affine Lie algebras. In this paper, we study solvable quadratic Lie algebras. In Section 1, we study quadratic solvable Lie algebras whose Cartan subalgebras consist of semi-simple elements. In Section 2,we present a procedure to construct a class of quadratic Lie algebras, and we can exhaust all solvable quadratic Lie algebras in such a way. All Lie algebras mentioned in this paper are finite dimensional Lie algebras over a field F of characteristic 0.
出处
《数学进展》
CSCD
北大核心
2005年第1期117-120,共4页
Advances in Mathematics(China)
基金
ThisworkissupportedbytheNationalNaturalScienceFoundationofChinaandtheFoundationalofJiangsuEducationalCommittee.