期刊文献+

广义区间空间中参数型非紧KKM定理及其在经济平衡问题上的应用 被引量:1

Some Parametric Non-compact KKM Theorems with Applications to Economic Equilibrium Problem on Generalized Interval Spaces
下载PDF
导出
摘要 在不具线性结构的拓扑空间———广义区间空间———中证明了集值映像参数型非紧的 KKM定理,用本文结果研究了极大极小问题和拓扑型广义经济Shafer Sonneischein平衡存在问题. We establish some parametric non-compact KKm theorems for set-valued mappings in Generalized interval spaces, general topological spaces without linear structure. As applications, we utilize the results to study the minimax problem and generalized economic Shafer-Sonneinschein equilibrium problem for Abstract economy.
作者 汪达成
出处 《大学数学》 北大核心 2005年第1期43-48,共6页 College Mathematics
基金 重庆市科委应用基础研究资助课题 批准号:030826 重庆市教委应用基础基金资助课题 批准号:020406
关键词 广区区间空间 非空交性质 T-区间闭集 T-凸集 T-紧集 Shafer-Sonneischein平衡问题 generalized interval space the nonempty intersection property (T-interval) closed set GT-convex set (T-convex) set GT-compact set Shafer-Sonneinschein equilibrium problem
  • 相关文献

参考文献8

  • 1Chang S S, Cao S Y, Wu X, Wang D C. Some Nonempty Intersections Theorems in Generalized Interval Spaces[J]. J.Math.Anal.Appl.,1996,(199)3:787-803.
  • 2Wang D C. Nonempty Intersection Theorems Minimax theorems with Applications in Generalized Interval Spaces[J]. Int.J.Math.Math.Sci., 2001,(28)2:111-125.
  • 3Aubin J P and Ekeland I. Applied Nonlinear Analysis[M]. John Wiley and Sons, 1984.
  • 4Kindler J. Topological Intersection Theorems[J]. Proc. Amer. Math. Soc., 1993,(117)4:1003-1011.
  • 5Ding X P and Tan K K. A Minimax Inequality with Applications to existence of equilibrium point and fixed point theorems[J]. Colloq. Math., 1992,(63)2:233-247.
  • 6Lassonde M and Schenkel C. KKM Principle, Fixed Points, and Nash Equilibria[J]. J.Math., Anal. Appl., 1992,(164)2:542-548.
  • 7Chang S S and Wu X. Non-compact Ben-El-Mechaiekh-Deguire-Grans minimax Theorems with Applications in Interval spaces[J]. Acta Math. Appl. Sin., 1997,(20)3:473-477.
  • 8Tian G Q. Generalizations of the FKKM Theorem and the Ky Fan Minimax Inequality, with Applications to Maximal elements. Price Equilibrium and Complementarities[J]. J.math. Anal. Appl., 1992(170):457-471.

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部