期刊文献+

基于CBR的贝叶斯网络构造 被引量:1

Bayesian Networks Construction Based on CBR
下载PDF
导出
摘要 从数据中学习贝叶斯网络往往会因为搜索空间庞大而耗费大量的时间,所以在构造贝叶斯网络的时候,常依靠以前的经验和知识。该文将过去的贝叶斯网络决策模型保存到案例中,定义相似度和背离度两个衡量指标,在构造新模型时,用基于案例推理的方法检索最为接近的案例,从而进行模型的复用,有效地提高建模的效率。 Learning the structure of Bayesian network from data can be time expensive because of huge search space.When constructing a Bayesian network,people usually depend on the foregone experience and knowledge.This paper stores the Bayesian networks in a case base,and defines two measures:similarity ratio and difference ratio,then uses case-based reasoning method to find the nearest case when modeling a new network.The order is to reuse models so as to improve the efficiency of modeling.
出处 《计算机工程与应用》 CSCD 北大核心 2005年第7期30-31,53,共3页 Computer Engineering and Applications
基金 国家自然科学基金(编号:70171033) 教育部人文社科"十五"规划项目(编号:01JA630061)
关键词 贝叶斯网络 知识 案例推理 案例库 Bayesian network,knowledge,case-based reasoning,cases base
  • 相关文献

参考文献6

  • 1陆汝钤.世纪之交的知识工程与知识科学[M].北京:清华大学出版社,2001..
  • 2Heckerman D.Bayesian Networks for Data Mining[J].Data Mining and Knowledge Discovery, 1997; 1: 79~119.
  • 3Zhang S Z,Yang N H,Wang X K.Construction and Application of Bayesian Networks in Flood Decision Support System[C].In:Proceedings of the First International Conference on Machine and Cybernetics,Beijing, 2002; 11: 718~722.
  • 4Cooper G,Herskovits E.A Bayesian Method for the induction of Probabilistic Networks from data[J].Machine Learning, 1992; 122 (9):309~347.
  • 5M P Wellman,J S Breese,R P Goldman.From knowledge bases to decision models[J].Knowledge Engineering Review,1992;7(1):35~53.
  • 6杨善林 倪志伟.机器学习与智能决策知识系统[M].北京:科学出版社,2004-05..

共引文献53

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部