摘要
研究了如下Hilbert空间中的半线性随机发展方程的Cauchy问题的适度解y(t;τ,Z)的性质:在所给条件下,y(t;τ,Z)的P(P≥2)阶矩的有界性及在p阶矩意义下对初值的连续相依性.同时,我们还讨论了问题的强解与适度解的关系,此处,R(λ,A)是A的预解式,并建立了该问题的强解与问题的适度解的联系.
In this paper,We discussed two problems:first, we discussed properties of the mild solution y(t:τ, Z)of the following Cauchy problem of semilinear stochastic evolution equations in HilbertSpacesWhere 0≤τ<t≤T, E | Z| p<∞ (p≥ 2). We obtain two useful properties on the mild solution of theproblem. Second,We proved the mild solution of the following Cauchy problemis a strong solution of the problem,Where R(λ)=λR(λ,A),R(λ, A) is the resolvent of A, λ∈ P(A),p(A)is the resolvent set of A. Together, we also establish connection of the mild solution of the following Cauchy problem with(* )
出处
《武汉大学学报(自然科学版)》
CSCD
1994年第2期29-36,共8页
Journal of Wuhan University(Natural Science Edition)
基金
国家自然科学基金
关键词
随机发展方程
强解
适度解
stochastic evolution equation,strong solution, mild solution