摘要
一个图C=(V,E)是[l,m]-泛连通的,如果在G的任意一对节点x与y之间有长为K—1的路Pk(x,y),K=l,l+l,…,m。G具有性质P(K),如果对G的任何一对距离为2的节点x和y,有d(x)+d(y)≥K。作者探讨了一类产(K)图的路连通性,改进了Faudree-Schelp定理,得到两个定理:定理1设G=(V,E)是n阶P(n—1)图。如果G是[n—1,n]-泛连通的,则G是[8,n]-泛连通图(n≥8).定理2设G是3-连通n阶P(n)图。如果G的独立数α(G)<n/2,则G是[5,n]-泛连通图,n≥5.
A graph G=(V,E)is called P(K)-graph if d(x) +d(y)>K holds for every twovenices x and y in v with distance 2. G is [1],m]-panconnected if for every two venices ofG,there is a K-vertex path connecting them, where K=1, 1 + 1, 1 +2, ...,m.In this paper,we study the path-connectivety of a kind of P(K)-graph and make animprovement of Faudree Schelp Theorem on path--connected graphs as follows.
关键词
路
泛连通图
P(K)图
path
panconnected graph
P (K)-graph