期刊文献+

公度时滞系统的有理镇定补偿器

On rational stabilizing compensators for commensurate time-delay systems
下载PDF
导出
摘要 讨论了具有公度时滞系统的有理函数镇定补偿器的条件和算法.在不含时滞的名义系统为最小相位的条件下,可设计一簇常数补偿器镇定具有公度的无限时滞系统;在不含时滞的名义系统可强镇定的条件下,可设计一簇有理函数补偿器镇定具有公度的有限时滞系统.给出了相应时滞补偿器的具体算法.设计者可从这簇补偿器中选取一个最优的补偿器满足特定的设计要求. This paper discusses the rational stabilizing compensators for commensurate time-delay systems. When the un-delaynominal systems are minimum phase systems, the constant stabilizing compensators and the corresponding algorithm are given for the infinite time-delay systems; when the un-delaynominal systems are strong stable systems, the rational stabilizing compensators and the (corres)-ponding algorithm are given for the finite time-delay systems. Designers can select a desired optimal compensator from the feasible set to satisfy a certainrequirement.
出处 《海军工程大学学报》 CAS 北大核心 2005年第1期7-10,15,共5页 Journal of Naval University of Engineering
基金 国家自然科学基金资助项目(60274007) 海军工程大学科学研究基金资助项目(HGDJJ02019)
关键词 公度时滞系统 补偿器 镇定 commensurate time-delay systems compensators stabilizing
  • 相关文献

参考文献13

  • 1Bellman R E, Cooke K L. Differential-Difference Equations [M]. New York: Academic,1963.
  • 2Dugard L, Verriest E I. Stability and Control of Time-Delay Systems [M]. Berlin: Springer-Verlag,1997.
  • 3Vidyasagar M. Control System Synthesis: A Factorization Approach [M]. Cambridge, MA:MIT Press,1985.
  • 4何汉林,王中生.同时强镇定的一个充分条件[J].海军工程大学学报,2003,15(5):1-4. 被引量:2
  • 5Glusing-Luerben H. A behavioral approach to delay-differential systems [J]. AIAM J. Contr. Optima., 1997, 35(2):480-499.
  • 6Kamen E W, Khargonekar P P, Tannenbaum A. Proper stable Bezout factorizations and feedback control of linear time-delay systems [J]. Int.J.Contr., 1986,43(3):837-857.
  • 7Bonnet C, Partington J R. Bezout factors and L1-optimal controllers for delay systems using a two-parameter compensator scheme [J]. IEEE Trans. Auto. Contr., 1999, 44(8):1512-1521.
  • 8Ying J Q, Lin Z, Xu L. Some algebraic aspects of the strong stability of time-delay linear systems [J]. IEEE Trans. Auto. Contr.,2001,46(3):454-457.
  • 9He H L, Wang Z S, Liao X X. Sufficient and necessary condition of strong stabilization for a class of time-delay systems [J]. Advances in Systems Science and Application, 2003,3(3):357-362.
  • 10Kamen E W, Khargonekar P P, Tannenbaum A. Stabilization of time-delay systems using finite-dimensional compensators [J]. IEEE Trans. Auto. Contr.,1985,30(1):75-78.

二级参考文献11

  • 1[1]Youla D, Bongiorno J, Lu C. Single-loop feedback stabilization of linear multivariable dynamical plants [J]. Automatica, 1974, 10(2):159-173.
  • 2[2]Vidyasagar M. Control System Synthesis: A Factorization Approach [M].MA: MIT Press, 1985.
  • 3[3]Ying J Q. Conditions for strong stabilizabilities of n-dimensional systems [J]. Multidimensional Syst. Signal Processing,1998,9(1):125-148.
  • 4[4]Ying J Q. On the strong stabilizabilities of MIMO n-dimensional linear systems [J]. AIAM J. Control Optim., 2000,38(2):313-335.
  • 5[5]Lin Z, Ying J, Xu L. An algebraic approach to strong stabilizability of linear nD MIMO systems [J]. IEEE Trans. Automat. Contr., 2002,47(9):1510-1514.
  • 6[6]Fonte C, Zasadzinski M, Bernier C, et al. On the simultaneous stabilization of three or more plants [J]. IEEE Trans. Automat. Contr., 2001,46(7):1101-1107.
  • 7[7]Saif A W, Gu D W, Kavranoglu D, et al. Simultaneous stabilization of MIMO systems via robustly stabilizing a central plant [J]. IEEE Trans. Automat. Contr.,2002,47(2):363-369.
  • 8[8]Abdallah C T, Dorato P, Bredemann M. New sufficient conditions for strong simultaneous stabilization [J]. Automatica, 1997,42(6):1193-1196.
  • 9[11]Dorato P, Park H, Li Y. An algorithm for interpolation with units in H∞ with applications to feedback stabilization [J]. Automatica, 1989,25(2):427-430.
  • 10Jiang Qian Ying.Conditions for Strong Stabilizabilities of n-Dimensional Systems[J].Multidimensional Systems and Signal Processing.1998(2)

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部