期刊文献+

Banach空间中非线性刚性DDEs θ-方法渐近稳定性 被引量:6

Asymptotic Stability of θ-methods for Nonlinear Stiff Delay Differential Equations in Banach Spaces
下载PDF
导出
摘要 科学与工程技术中存在大量刚性问题,尽管问题本身是整体良态的,但当使用内积范数时,其最小单边 Lipschitz 常数却不可避免地取非常巨大的正值,导致基于此常数下建立的数值稳定性理论失效。针对求解 Banach 空间中一类非线性刚性延迟微分方程初值问题的线性和单支θ -方法建立了渐近稳定的充分条件,即使按内积范数其单边 Lipschitz 常数十分巨大的问题仍有可能属于这类问题,因而所建立的结果对于这些问题同样是适用的。 The sufficient conditions are established for the linear and one-lag θ-methods to be asymptotic stable when applied to a class of nonlinear Stiff delay differential equations in Banach spaces. For some stiff problems in the fields of scientific and engineering, it may happen that the one-sided Lipschitz constant is very large even if the problem is well conditioned, which causes the existing numerical theory in Hilbert space impracticable, but the stability criteria established in the present research are still applicable.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2005年第3期606-608,共3页 Journal of System Simulation
基金 国家自然科学基金资助项目(10271100) 湖南省自然科学基金资助项目(03JJY3004) 湖南省教育厅项目(04A057)。
关键词 BANACH空间 渐近稳定性 延迟微分方程 Θ-方法 Banach space asymptotic stability delay differential equation θ-method.
  • 相关文献

参考文献9

  • 1C. T. H. Baker. Retarded differential equations [J]. J. Comput. Appl. Math., 2000,125: 309-335.
  • 2A. Bellen, M. Zennaro. Numerical Methods for Delay Differential Equations [M]. Oxford University Press, Oxford, 2003.
  • 3甘四清,孙耿.时滞微分方程真解光滑化的定性分析[J].自然科学进展,2002,12(7):742-744. 被引量:5
  • 4匡跤勋.泛函微分方程的数值处理[M].北京:科学出版社,1999..
  • 5M.Z.Liu, M.N.Spijker. The stability of the methods in the numerical solution of delay differential equations [J]. IMA J.Numer.Anal., 1990, 10: 31-48.
  • 6C.M.Huang, H.Y.Hu, S.F.Li, G.N.Chen. Stability and analysis of one-lag methods for nonlinear delay differential equations [J]. Comput.Appl.Math, 1999,103: 263-279.
  • 7C.Zhang, S.zhou. Nonlinear stability and D-convergence of Runge- Kutta methods for DDEs [J]. J.Comput.Appl.Math, 1997, 85: 225-237.
  • 8李寿佛.一类多步方法的非线性稳定性.高等学校计算数学学报,1987,2:110-118.
  • 9Shoufu Li. Stability analysis of solutions to nonlinear stiff Volterra functional differential equations in Banach [J]. spaces (to appear Science In China).

二级参考文献6

  • 1[1]Driver R D.Ordinary and Delay Differential Equations.New York:Springer-Verlag,1977
  • 2[2]Hale J K.Theorey of Functional Differential Equations.New York:Springer-Verlag,1977
  • 3[3]Hairer E,et al.Solving ordinary differential equations I,Nonstiff Problems.Berlin:Springer-Verlag,1993
  • 4[4]Zennaro M.Delay differential equations:Theory and Numerics,The-ory and Numerics of Ordinary and Partial Differential Equations.Ainsworth M,et al.eds.Oxford:Clarendon,1995.291-333
  • 5[5]Torelli L.Stability of numerical methods for delay differential equa-tions.J Comput Appl Math,1989,25:15
  • 6[6]Huang C M,et al.Stability analysis of Runge-Kutta methods for non-linear delay differential equations.BIT,1999,39:270

共引文献4

同被引文献17

引证文献6

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部