期刊文献+

离散特征点探测算法 被引量:1

Dispersed Featured Point Detection
下载PDF
导出
摘要 在建立新的特征点响应函数的基础上,提出了一种特征点探测算法,算法以图像分块为基础,通过计算每一分块内的特征点,进行特征点连通集约简获得离散特征点集,实验证明,算法效率得到了较大提高,解决了使用全局特征响应阈值造成的特征点聚集和不敏感特征点被错误剔除的问题。 Based on setting up a new feature point response function, we propose a new feature point detection algorithm. By image segmentation, computing feature point in each block and continuous feature points set reduction, the dispersed feature point set is reached. The experiments prove that the detection efficiency is improved, while the feature points mass due to traditional global response threshold is avoid and most of the insensible feature points are preserved.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2005年第3期659-661,共3页 Journal of System Simulation
关键词 离散特征点 特征点探测 图像分块 连通子集 dispersed feature point, feature point detection, image segment, continuous set
  • 相关文献

参考文献12

  • 1Deriche R, Zhang Z, Luong Q. Robust Recovery of the Epipolar Geometry for an Uncalibrated Stereo rig[C]. Proc. of the European.
  • 2Richard I. Hartley. In Defence of the 8-point Algorithm[C]. Proc. of the 5th Int. Conf. on Computer Vision. 1995, 1064-1070.
  • 3Zheng Z, Wang H, Teoh E K. Analysis of gray level corner detection[R]. Pattern Recognition Letters, 1999, 20: 149-162.
  • 4Wang H, Brady M. Real-time corner detection algorithm for motion estimation[J]. Image and Vision Computing, 1995, 13(9): 695-703.
  • 5Kitchen L, Rosenfeld A. Gray level corner detector[R]. Pattern Recognition Letters, 1982, 1: 95-102.
  • 6Paul L Rosin. Measuring Corner Properties[J]. Computer Vision and Image Understanding, 1999, 73(2): 291-307.
  • 7Shen F, Wang H. Real Time Grey Level Corner Detector[C]. Proc. of the 6th Conf. on Control, Automation, Robotics and Vision, 2000.
  • 8Beaudet P R. Rational invariant image operators[A]. In: Fourth International Conference on Pattern Recognition[C]. 1978. 579-583.
  • 9Deriche R, Giraudon G. A computational approach for corner and vertex detection[J]. International Journal of Computer Vision, 1993, 10 (2): 101-124.
  • 10Stephen Smith. SUSAN-A New Approach to Low Level Image Processing[J]. International Journal of Computer Vision, 1997, 23(1): 45-78.

同被引文献10

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部