摘要
景物边缘信息是进行图象分析和识别的重要属性,如何有效地从噪声图象中提取边缘是这些领域中的难点。该文提出了一种边缘分段自增强算法用于噪声图象的边缘提取。该算法首先对噪声图象进行小尺度高斯滤波,并使用该文设计的新型边缘检测算子获取引导信息,此边缘检测算子在定位精度、抑制噪声和虚假边缘方面具有很好的性能;然后对各搜索轨迹进行分段自增强,最后根据自增强累积的程度获取噪声图象中的边缘。实验结果表明:此算法能够有效地从噪声图象中提取物体的真实边缘,并能最大限度地保留细节信息。
Edge is an important attribute for image analysis and recognition,but it is difficult to effectively extract edge from noisy image in the domain.In this paper,a novel sub-edge self-reinforcement algorithm for edge extraction in noisy image is proposed.Firstly,the noisy image is filtered by a small scale Gaussian Filter,then a new Large Template Edge Detector is designed in order to get more accurate lead information for the subsequential sub-edge self-reinforces;Finally,the real edge of noisy image is extracted from the accumulated search trajectories.Experimental results show that the method can extract real edge in noisy image while keeping the image details.
出处
《计算机工程与应用》
CSCD
北大核心
2005年第8期34-36,59,共4页
Computer Engineering and Applications
基金
国家自然科学基金资助项目(编号:60175001)
关键词
边缘提取
分段自增强
启发式搜索
小尺度高斯滤波
edge extraction,sub_edge accumulation,heuristic search,small scale Gaussian filtering