期刊文献+

基于异集产生频繁项集的研究

Generating Frequent Itemsets Based on Diffsets
下载PDF
导出
摘要 如何从密集数据库中高效挖掘频繁项集一直是数据挖掘领域研究的难点和重点。文章介绍了一种新的数据存储格式—异集。将密集数据库转换为异集数据库,可大幅度降低数据库的规模、挖掘过程产生的中间结果以及CPU计算时间。该文给出了一个基于异集数据库的频繁项集的挖掘算法,实验表明该算法有效。 How to mine frequent itemsets efficiently from dense databases has been a difficult and important problem in data mining field.This paper presents a novel data format:diffset.A switch from dense database to diffset database will drastically cut down the magnitude of the database,the size of the intermediate results and CPU computing time.An algorithm mining frequent itemsets based on diffset database is presented,and the experiments show that the algorithm is valid for frequent itemsets mining.
作者 马猛 倪志伟
出处 《计算机工程与应用》 CSCD 北大核心 2005年第8期173-175,232,共4页 Computer Engineering and Applications
关键词 异集 关联规则 频繁项集 密集数据库 diffsets,association rule,frequent itemset,dense database
  • 相关文献

参考文献9

  • 1Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases[C].In:Proceedings of 1993 ACM SIGMOD International Conference on Management of Data,Washington, DC, 1993: 207-216.
  • 2Agrawal R,Srikant R.Fast algorithm for mining association rules[C].In:Proceedings of 1994 International Conference on Very Large Databases, Santiago, Chile, 1994: 487-499.
  • 3M J Zaki.Scalable Algorithms for Association Mining[J].IEEE Transactions on Knowledge and Data Engineering, 2000; 12 (3): 372-390.
  • 4M J Zaki.Generating non-redundant association rules[C].In:Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining, Boston, Massachusetts, United States,2000: 34-43.
  • 5Ashoka Savasere ,Edward Omiecinski ,Shamkant B Navathe. An Efficient Algorithm for Mining Association Rules in Large Databases[C].In:Proceedings of the 21th International Conference on Very Large Data Bases, 1995:432-444.
  • 6M J Zaki,C J Hsiao. CHARM:An efficient algorithm for closed itemset mining[C].In:2nd SIAM Intel Conf on Data Mining,2002.
  • 7M J Zaki,K Gouda. Fast vertical mining using Diffsets[R].Technical Report 01-1 ,Computer Science Dept,Rensselaer Polytechnic Institute, 2001-03.
  • 8N Pasquier,Y Bastide,R Taouil et al. Discovering frequent closed itemsets for association rules[C].In:17th Intel Conf On Database Theory, 1999.
  • 9J Pei,J Han,R Mal. Closet:An efficient algorithm for mining frequent closed itemsets[C].In:SIGMOD International Workshop on Data Mining and Knowledge Discovery,2000-05.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部