期刊文献+

模糊神经网络模型混沌混合优化学习算法及应用 被引量:5

Hybrid chaos optimization algorithm for fuzzy neural network model and its applications
下载PDF
导出
摘要 基于混沌优化的思想,提出一种新的模糊模型的优化学习算法.将模糊推理规则转化为模糊RBF网络模型,用模糊C均值(FCM)聚类算法和分区效验熵得到模型结构,用混沌变换序列寻优得到优化的中心初值群,用FCM获得最优聚类中心,最后获得模糊神经网络模型.将该方法应用于转炉终点磷含量预报模型,取得了较好的结果. Based on the idea of chaos optimization, an optimization algorithm for the fuzzy model is presented. The fuzzy model can be represented as a fuzzy RBF neutral network model. The structure of the model is determined using the FCM algorithm and the clustering validity criteria. The initial parameter of clustering centers is obtained using synthetical chaos series and is further optimized using the FCM algorithm. The proposed approach is used successfully for the prediction of end phosphorus content in converter.
出处 《控制与决策》 EI CSCD 北大核心 2005年第3期261-265,共5页 Control and Decision
基金 国家863计划基金项目(2001AA11040) 湖南省自然科学基金项目(01JJY3029) 湖南省教育厅基金项目(04G718).
关键词 模糊模型 径向基网络 模糊聚类 混合混沌优化 终点磷含量 Chaos theory Data processing Neural networks Optimization Phosphorus compounds
  • 相关文献

参考文献10

  • 1李红军,秦永胜,徐用懋.化工过程中的数据协调及显著误差检测[J].化工自动化及仪表,1997,24(2):25-33. 被引量:38
  • 2谢书明,高宪文,柴天佑.基于灰色模型的转炉炼钢终点预报研究[J].钢铁研究学报,1999,11(4):9-12. 被引量:16
  • 3张彤,王宏伟,王子才.变尺度混沌优化方法及其应用[J].控制与决策,1999,14(3):285-288. 被引量:225
  • 4原隆康,靳雨菲.转炉终点动态磷控制技术的开发[J].世界钢铁,2000(2):53-59. 被引量:3
  • 5Bezdek J C. Convergence theory for fuzzy C-means: Counterexamples and repaires[J]. IEEE Trans on Systems, Man and Cybernetics,1987, 17(2): 873-877.
  • 6Tsao E C, Bezdek J C. Fuzzy Kohonen clustering networks[J]. Pattern Recognition, 1994,27(5): 757-764 .
  • 7Wang L X, Medel J M. Backpropagation fuzzy system as nonlinear dynamic system identifier[A]. IST IEEE Int Conf on Fuzzy Systems[C]. San Diego, 1992:1409-1418.
  • 8Hunt K J. Extending the functional equivalence of radial basis function networks and fuzzy inference system[J]. IEEE Trans on Neural Networks,1996,(3):776-781.
  • 9Chen M Y. Linkens D A. A fuzzy modelling approach using hierarchical neural networks[J]. Neural Comput and Applications, 2000,(9):44-49.
  • 10Lin Y, Cunningham G A. A new approach to fuzzy-neural system modeling[J]. IEEE Trans on Fuzzy System, 1995,(3):190-197.

二级参考文献15

共引文献275

同被引文献30

  • 1王爽心,韩芳,朱衡君.基于改进变尺度混沌优化方法的经济负荷分配[J].中国电机工程学报,2005,25(24):90-95. 被引量:27
  • 2鄂加强,王耀南,梅炽,龚金科.铜精炼过程液化气消耗泛函混沌优化器的设计[J].中国有色金属学报,2006,16(2):370-376. 被引量:4
  • 3郭金东,赵栋利,林资旭,许洪华.兆瓦级变速恒频风力发电机组控制系统[J].中国电机工程学报,2007,27(6):1-6. 被引量:106
  • 4Waiters P. An Introduction to Ergodic Theory[M]. New York: Springer-Veringer, 1982.
  • 5汪荣鑫.随机过程[M].西安:西安交通大学出版社,1992.
  • 6Creighton D C,Nahavandi S.Optimizing Discrete Event Simulation Models Using a Reinforcement Learning Agent[A].Proc of Winter Simulation Conf[C].San Diego,2002:1945-1950.
  • 7Ster B.An Integrated Learning Approach to Environment Modeling in Mobile Robot Navigation[J].Neurocomputing,2004,57(1-4):215-238.
  • 8Samejima K,Omori T.Adaptive Internal State Space Construction Method for Reinforcement Learning of a Real-world Agent[J].Neural Networks,1999,12(7):1143-1155.
  • 9Meesad P,Yen G G.Accuracy,Comprehensibility and Completeness Evaluation of a Fuzzy Expert System[J].Int J of Uncertainty,Fuzziness and Knowledge-based Systems,2003,11(4):445-466.
  • 10Lee Y A,Chung T C.A Function Approximation Method for Q-learning of Reinforcement Learning[J].J of KISS:Software and Applications,2004,31(11):1431-1438.

引证文献5

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部