期刊文献+

可液化土中地铁结构的地震响应 被引量:54

Earthquake induced liquefaction response of subway structure in liquefiable soil
下载PDF
导出
摘要 在饱和土耦合作用与土和结构相互作用理论基础上,以地铁车站为例,用有限元法研究地下结构在地震液化作用下的响应。所采用的软件为动力两相体非线性有限元软件 Dyna-Swandyne-II,该软件可以应用先进的 Pastor-Zienkiewicz III 广义塑性模型模拟可液化土的动力特性,应用 u-p 形式的 Biot 方程,在有限元分析中充分考虑孔隙水与土之间的耦合,同时考虑地下结构与饱和土在动力作用下的非线性相互作用。分析了地铁车站的动力响应,包括地铁内力、加速度以及地铁位移。研究结果表明,地铁结构在地震液化作用下会产生较大的上浮,从而对结构造成比较严重的破坏;地铁结构在地震作用下的最大内力位于结构的交接处。因此,结构交接处的配筋应该格外小心。 Based on the theories of coupled interaction in saturated soil and dynamic soil-structure interaction, the response of subway structure in fully saturated liquefiable soil under earthquake excitation is investigated using the effective-stress based finite element program Dyna-Swandyne-II. A generalized plasticity model, Pastor-Zienkiewicz III model, is used to model the cyclic behavior of soil; and finite element procedure based on the u-p form of Biot theory is employed to conduct the coupled analysis. The nonlinearity of the interaction between soil and subway structure is fully considered. The dynamic response of subway structure, including the internal forces, the acceleration, and the vertical and horizontal displacements, are analyzed. The results showed that the subway structure may uplift due to the earthquake induced liquefaction, which shall lead to severe damage in the structure; and that the maximum seismic internal forces occurred at the connections of the structure elements and their reinforcement must be carefully designed.
出处 《岩土力学》 EI CAS CSCD 北大核心 2005年第3期381-386,391,共7页 Rock and Soil Mechanics
基金 国家自然科学基金项目(No. 50378050) 北京市自然科学基金重点项目(No. 8011002)。
关键词 地下结构 液化 动力相互作用 动力耦合分析 上浮 Earthquake effects Finite element method Mathematical models Soil liquefaction Soil structure interactions Soils Subways Uplift pressure
  • 相关文献

参考文献13

  • 1Hamada M, Isoyama R, Wakamatsu K. Liquefaction induced ground displacement and its related damage to lifeline facilities[J]. Soils and Foundations, 1996, 36 (1): 81-97.
  • 2Hashash Y M A, Hook J J, Schmidt B, Yao J. Seismic design and analysis of underground structures[J]. Tunnelling and Underground Space Technology, 2001, 16(4): 247-293.
  • 3毕继红,张鸿,邓芃.基于耦合分析法的地铁隧道抗震研究[J].岩土力学,2003,24(5):800-803. 被引量:23
  • 4Ling H I, Mohri Y, Kawabata T, Liu H, Burke C, Sun L. Centrifugal modeling of seismic behavior of large-diameter pipe in liquefiable soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, American Society of Civil Engineering, 2003, 129(12): 1 092-1 101.
  • 5邹德高,孔宪京,Ling H.I.,朱彤.地震时饱和砂土地基中管线上浮机理及抗震措施试验研究[J].岩土工程学报,2002,24(3):323-326. 被引量:26
  • 6Chan A H C. User manual for Diana Swandyne-Ⅱ[R]. Glasgow: University of Glasgow, 1989.
  • 7Katona M G, Zienkiewicz O C. A unified set of single step algorithms Part 3: The Beta-m method, a generalization of the newmark scheme[J]. International Journal for Numerical Methods in Engineering, 1985, 21: 1 345-1 359.
  • 8Zienkiewicz O C, Chan A H C, Pastor M, Schrefler B A, Shiomi T. Computational Geomechanics with Special Reference to Earthquake Engineering[M]. New York: John Wiley & Sons, 1998.
  • 9Chan A H C, Famiyesin O O, Muir W D. Numerical prediction for model No. 1[A]. Arulanandan K, Scott R F. Verification of Numerical Procedures for the Analysis of Soil Liquefaction Problems[C]. Rotterdam: Balkema A A, 1994. 87-108.
  • 10Madabhushi S P G, Zeng X. Seismic response of gravity quay wall. Ⅱ: numerical modeling[J]. Journal of Geotechnical and Geoenvironmental Engineering, American Society of Civil Engineering, 1998, 124(5): 418-427.

二级参考文献9

  • 1邓M.[D].天津: 天津大学,2003.
  • 2[1]Mohri Y, Yasunaka M, Tani S. Damage to buried pipeline due to liquefaction induced performance at the ground by the Hokkaido-Nansei-Oki Earthquake in 1993[A].Proceedings of First International Conference on Earthquake Geotechnical Engineering[C]. Rotterdam: Balkema, 1995.31-36.
  • 3[2]Koseki J, Matsuo O, Sasaki T, Saito K, Yamashita M.Damage to sewer pipes during the 1993 Kushiro-Oki and the 1994 Hokkaido-Toho-Oki earthquakes[J]. Soils and Foundations, 2000,40(1):99-111.
  • 4[3]Newmark N M, Hall W J. Pipeline design to resist large fault displacement[A]. Proceedings of First US Conference on Earthquake Engineering[C].Ann Arbor,1975.416-425.
  • 5[4]Trautmann C H, O'Rourke T D, Kulhawy F D. Uplift force-displacement response of buried pipe[J]. Journal of Geotechnical Engineering, ASCE, 1985,111(9):1061-1076.
  • 6[5]Mohri Y, Kawabata T,Ling H I. Experimental study on the effects of vertical shaking on the behavior of underground pipelines[A]. Proceedings of Second International Conference on Earthquake Geotechnical Engineering[C].Lisbon,489-494.
  • 7钱家欢.土工原理与计算[M].北京:中国水利水电出版社,1980..
  • 8孙海涛,徐迎伍.软土地层中盾构隧道地震反应分析[J].勘察科学技术,2000(1):10-14. 被引量:9
  • 9陈波,吕西林,李培振,陈跃庆.用ANSYS模拟结构-地基动力相互作用振动台试验的建模方法[J].地震工程与工程振动,2002,22(1):126-131. 被引量:72

共引文献47

同被引文献525

引证文献54

二级引证文献383

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部