期刊文献+

高次数弹性函数的构造 被引量:2

Constructions of high degree resilient functions
下载PDF
导出
摘要 给出了一种直接构造弹性函数的方法, 得到了次数大于m的n个输入m个输出弹性度为t的函数,并且在相同次数下得到了目前非线性度最高的函数,而且满足扩散准则同时给出了它的计数。用这种方法构造的弹性函数易于计算机实现。 A method for constructing high degree resilient function was presented. we obtained n-variable, m-output,t-resilient functions with degree d>m. Furthermore, their nonlinearities are currently the best results for most of cases with the same degree. Propagation characteristics, which is a crucial criterion for cryptographically strong functions, of obtained functions were discussed. The calculation was given at the same time.
作者 张劼 温巧燕
出处 《通信学报》 EI CSCD 北大核心 2005年第2期19-24,共6页 Journal on Communications
基金 基金项目:国家自然科学基金资助项目( 60373059) 中科院信息安全国家重点实验室开放基金资助项目
关键词 相关免疫 弹性函数 线性码 扩散准则 correlation immunity resilient function linear codes propagation criterion
  • 相关文献

参考文献11

  • 1CHOR B, GOLDREOCH O, HASTAD J, et al. The bit extraction problem or t-resilient functions[A]. The 26th IEEE Symp on Foundations of Computer Science[C]. 1985. 396-407.
  • 2BENNETT C, BRASSARD G, ROBERT J. Privacy amplification by public discussion[J]. SIAM J Comput, 1988,17(2): 210-229.
  • 3RUEPPEL R. Analysis and design of stream ciphers[M]. Berlin Germany: Spring-verlag, 1996.
  • 4SIEGENTHALER T. Correlation-immunity of nonlinear combining functions for cryptographic applications[J]. IEEE Trans, Inform Theory, 1984,IT-30(9): 776-779.
  • 5PASALIC E, MAITRA S. Linear codes in generalized construction of resilient function with very high nonlinearity[J]. IEEE Trans Inform Theory, 2002, 48(8): 2182-2191.
  • 6CHEON J. Nonlinear vector resilient functions[A]. Advances in Cryptology-Cryptogy 2001[C]. Lecture Notes in Computer Science,Springer-Verlag, 2001.458-469.
  • 7KISHAN C, PALASH S. Improved construction of nonlinear resilient S-Boxes[A]. ASIACRYPT 2002, LNCS 2501[C]. 2002. 466-483.
  • 8XIAO G, MASSEY J. A special characterization of correlation immune combining functions[J]. IEEE Trans Inform Theory, 1998, 34(8):569-571.
  • 9SEBERRY J, ZHANG X, ZHENG Y. Relationships among nonlinearity criteria[A]. Advances in Cryptology-EUROCRYPT'94,Lecture Notes in Computer Science[C]. Berlin, Germany:Springer-verlag, 1994. 376-388.
  • 10JOHANSSON T, PASALIC E. A construction of resilient functions with high nonlinearity[J]. IEEE Trans Inform Theory,2003,49(2):494-507.

同被引文献22

  • 1Liu Wenfen LiShiqu Dept. ofAppl. Math., Inform ation Engineering Institute, Zhengzhou 450002..ON CONSTRUCTION OF A CLASS OF NONLINEAR RESILIENT FUNCTIONS[J].Applied Mathematics(A Journal of Chinese Universities),1999,14(3):251-258. 被引量:1
  • 2韦永壮,高军涛,胡予濮.一种构造高阶弹性函数的新方法[J].工程数学学报,2005,22(2):255-260. 被引量:1
  • 3张亮,戎蒙恬,诸悦,吕永其.基于混沌系统的真随机数发生器芯片设计和实现[J].上海交通大学学报,2006,40(3):421-424. 被引量:6
  • 4Sunar B,Martin W J,Stinson D R.A Provably Secure True Random Number Generator with Built-In Tolerance to ActiveAttacks[J].IEEE Transactions on Computers,2007,56(1:109-119.
  • 5Schindler W,Killmann W.Evaluation Criteria for True (Physical Random Number Generators Used in Cryptographic Applieations[C]//Proceeedings of Workshop on Cryptographie Hardware and Embedded Systems (CHES 02,2003:431-449.
  • 6Bucei M,Luzzi R Design of Testable Random Bit Generators[C]//Proeeedings of Workshop on Cryptographic Hardware and Embedded Systems (CHES 05,2005:131-146.
  • 7Schellekens D,Preneel B,VerbauwbedeL.FPGA Vendor Agnostic True Random Number Generator[C]//Proceedings of 16th International Conference on Field Programmable Logic and Applications (FPL'06),2006:139-144.
  • 8林舒,科斯特洛.差错控制编码[M].人民邮电出版社,1986:698-718.
  • 9Bock H,Bucci M,Luzzi R An Offfset-Compensated Oscillator-Based Random Bit Source for Secure Applications[C].Proceedings of Workshop on Cryptographic Hardware and Embedded Systems (CHES 04,2004:268-281.
  • 10Chor B, Goldreich O, Hastad J, et al. The bit extraction problem or t-resilient functions [ C ]//Proceeding 26th IEEE Symposium on Foundations of Computer Science.1986,26:396 - 407.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部