摘要
讨论Banach空间中常微分方程Cauchy问题的近似解与解的关系,得到一个Cauchy问题的近似解与解的关系的定理:定理设f_n∈C[R_0,E](n≥1),f∈C[R_0,E],序列{f_n}在R_0上一致收敛于f;又设0<α≤a,x_n∈C ̄1[[t_0,t_0+α],B(x_0,b)],且满足Cauchy问题x'_n(t)=f_n(t,x_n(t))x_n(t_0)=z_n其中t∈[t_0,t_0,t_0+α],n=1,2,…,z_n∈E,z_n→x_0(n→∞),如果x_n(t)在[t_0,t_0+α]上一致收敛于x(t),则x∈C ̄1[[t_0,t_0+α],B(x_0,b)],且对t∈[t_0,t_0+α],有x'(t)=f(t。
We discuss the relation between approximate solu tion for the canchy problem of ordinary differen-tial equation on Banach space and obtain a theorem about it.Theorem Let f_n∈C[R_0,E](n≥1),f∈C[R_0,E],the seqence{f_n}uniformly converges to fon R_0;and let 0<α<a,x_n∈C ̄1[[t_0,t_0+a],B(x_0,b)] and satisfy the Cauchy problemwhere t∈[t_0,t_0+a],n=1,2,…, if x_n(t) uniformly converges to x(t)on[t_0,t_0+a],x∈C ̄1[[t_0,t_0+a],B(x_0,b)]and x′(t)=f(t,x(t))x(t_0)=x_0 for every t∈[t_0,t_0+a]。
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
1994年第5期468-471,共4页
Journal of Southwest China Normal University(Natural Science Edition)
关键词
近似解
解
常微分方程
边值问题
Cauchy problem
approximate solution
solution
ordinary differential equalion