摘要
给出了局部凸空间上连续半范数,有界半范数和下半连续半范数等的泛函表示,应用这些表示定理,我们得到了Banach-Mackey空间的一个全局特征和囿空间的对偶特征,最后还给出了局部凸空间理论中一些重要定理的简化证明。设X是Hausdorff局部凸空间,X′为X上的连续线性泛函全体,X ̄b是X上的有界线性泛函全体,则有定理1(3)p:X→R是连续(下半连续)半范数当且仅当存在X′的等度连续(σ(X′,X)有界)子集B使得对任何x∈X都有定理4X是Banach-Mackey空间当且仅当X上每个下半连续半范数都是有界的。定理5X是囿空间当且仅当X ̄b中的β(X ̄b,X)有界集都是X′中的等度连续集。
The functional representation of some seminorms such as the continuous seminorms, the beundedseminorms and the lower semicontinuous seminorms are given out.Applying these representation theo-rems,we obtain a global charactoristics of Banach-Mackey spaces and the dual charactoristics ofbornologic spaces, and finally put forward simple proofs for some important theorems in the theory oflocally convex spaces. Let X be a Hausdorff locally conwex space, X′the set of all continuous linearfunctions,X ̄b the set of all bounded linear functions, then one has Theorem 1(3)p: X→R is a continuous(lower semicontinuous)seminorm if and ouly if there ex-ists an equicontinuous(a σ(X′,X)-bounded)subset B of X′such thatfor all x∈X.Theorem 4 X is a Banach-Mackey space if and only if every lower semicontinuous seminorm onX is bounded.Theorem 5 X is a bernologic space if and only if every β(X ̄b, X)-bounded subset of X ̄b is e-quicontinuous on X.
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
1994年第5期451-456,共6页
Journal of Southwest China Normal University(Natural Science Edition)
关键词
半范数
线性泛函
局部凸空间
seminorm,linear function
bounded subset
equicontinuous subset
Banach-Mackey space
bomologic space