期刊文献+

具HollingⅡ型响应函数捕食模型的稳态解

Stable Solution of a Predator-Prey Model with Holling Ⅱ Functional Response
下载PDF
导出
摘要 研究了一类非线性反应扩散系统 ,该系统描述了具HollingⅡ型响应函数的捕食模型 ,首先利用正性引理和上下解方法给出了问题解的全局存在性和唯一性 ,接着给出了常微系统和偏微系统稳定性的结果 ,最后用这些结果给出了所讨论问题的全局稳定性 ,并在生物意义上给出解释。 This paper addresses a nonlinear reaction diffusion system, describing a predator-prey model with Holling Ⅱ type functional response. At first Postivity Lemma is used to prove the global existence and uniquiness of this pnablem. And then of the stabilitybetween ODE system and PDE system is set forth. Finally the reslut is demonstrated in the sense of Ecology.
作者 田灿荣
出处 《盐城工学院学报(自然科学版)》 CAS 2005年第1期14-19,共6页 Journal of Yancheng Institute of Technology:Natural Science Edition
关键词 响应函数 上下解 全局稳定 functional response upper and lower solution globally stable
  • 相关文献

参考文献1

二级参考文献21

  • 1Lou Y., Necessary and sufficient condition for the existence of positive solutions of certain cooperative system,Nonlinear Anal., 1996, 26(6): 1019-1095.
  • 2Lou Y., Ni W. M., Diffusion, vs, cross-diffusion: an elliptic approach, J. Differential Equations, 1999, 154:157-190.
  • 3RuanW. H., Positive steady-state solutions ofa competing reaction-diffusion system with large cross-diffusion coefficients, J. Math. Anal. Appl., 1996, 197: 558-578.
  • 4Martin R. H., Smith H. L., Abstract functional differential equations and reaction diffusion systems, Trans.Amer. Math. Soc., 1990, 321: 1-44.
  • 5Rankin S. M., Existence and asymptotic behavior of a functional differential equation in Banach space, J.Math. Anal. Appl., 1982, 88: 531-542.
  • 6Travis C. C., Webb G. F., Existence and stability for partial functional differential equations, Trans. Amer.Math. Soc., 1974, 200: 395-418.
  • 7Wu J., Theory and Applications of Partial Functional Differential Equations, New York: Springer-Verlag,1996.
  • 8Lu X., Persistence and extinction ina competition-diffusion system with time delay, Canadian Appl. Math.Quart., 1994, 2: 231-246.
  • 9Pao C. V., Dynamics of nonlinear parabolic systems with time delays, J. Math. Anal. Appl., 1996, 198:751-779.
  • 10Pao C. V., Systems of parabolic equations with continuous and discrete delays, J. Math. Anal. Appl., 1997,205: 157-185.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部