摘要
作者在Hopfield神经网的基础上构造了一种实时处理的自适应波束形成网络。由于实际应用中神经元的联结矩阵有时是奇异的,文章引入正则化方法,有效地提高了网络解的稳定性和处理速度。为了降低编程复杂性,避免计算求协方差矩阵,作者还改进了一种网络,该网络用模拟电路实现不需要任何计算,并且便于用常规的模拟电路实时处理。仿真实验结果表明,这种网比传统的自适应方法有较好的收敛和跟踪性能。
new Hopfield-type neural network approach to adaptive beamforming is pres-ented.Because the link matrix of the elementry neurons is sometimes singular in practical application, a regularization method is introduced in this paper to efficiently increase the stability of solution and the speed of network.In addition,in order to simplify programming and avoid compu-tation of covariance,an improved network is introduced ,which need no computation and easy for realtime processing by the conventional analog cireuit. Simulation results show that it takes advan-tages in both convergence and tracking performances over the conventional techniques.
出处
《系统工程与电子技术》
EI
CSCD
1994年第4期1-5,共5页
Systems Engineering and Electronics
基金
国家自然基金
关键词
神经网络
自适应波束
实时
Neural network,Adaptive beamforming,Regulazation,Realtime.