期刊文献+

基于纹理特征的高分辨率SAR影像居民区提取 被引量:33

Residential Areas Extraction In High Resolution SAR Image Based on Texture Features
下载PDF
导出
摘要 利用灰度共生矩阵计算高分辨率SAR图像的纹理特征,通过统计分析选取合适的特征矢量,并基于非监督聚类分析提取居民区。对提取的居民区以一定的面积阈值剔除噪声(细小区域),并利用形态学算子对提取边界进行适当的归整,得到最终结果。在对应的光学图像上人工提取居民区范围,以此作为实验结果的评价标准。实验结果表明本方法可以得到较好的效果。 With the resolution of SAR image is improving, the inner structure of residential area shows more complex in high-resolution SAR images than low ones. An approach is proposed to extracting residential area based on SAR texture features extracted from the Gray Level Co-occurrence Matrix (GLCM). Firstly, six texture features such as energy, entropy, contrast, variance, correlation, and inverse difference moment are investigated. Secondly, the three GLCM parameters: window size, step and angle are decided. Thirdly, the feature vector is reduced from six to two. Then an unsupervised analysis is applied to the data to extract the residential area. Finally the small areas are deleted, and morphological operators are applied to adjust the sketch of the extracted area. The proposed method has been tested by using airborne SAR data at 3 m resolution.
出处 《遥感技术与应用》 CSCD 2005年第1期148-152,共5页 Remote Sensing Technology and Application
基金 国家重点基础研究发展规划项目(2001CB309406) 中国科学院知识创新工程重要方向项目(KZCX2-309) 国家自然科学基金项目(40071062)的联合资助。
关键词 共生矩阵 SAR 纹理特征 居民地 Gray level co-occurrence matrix (GLCM), Synthetic aperture radar(SAR), Texture feature, Residential areas
  • 相关文献

参考文献7

  • 1周成虎 骆剑承 刘庆生 等.遥感影像地学理解与分析[M].北京:科学出版社,2001..
  • 2Robert M H, Shanmugam K, ITS'HAK Dinstein. Textural Features for Image Classfication[J]. IEEE Transaction on Systems Man and Cyernetics, 1973, 3(6): 610~621.
  • 3Fabio Dell' Acqua, Paolo Gamba. Texture-Based Characte-rization of Urban Environments on Satellite SAR Images[J]. IEEE Transactions on Geoscience and Remote sensing, 2003, 41(1): 153~159.
  • 4Yun Zhang. Optimisation of Building Detection in Satellite Images by Combining Multispectral Classification and Texture Filtering[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 1999,54: 50~60.
  • 5Andrea Baraldi, Flavio Parmiggiani. An Investigation of the Textural Characteristics Associated with Gray Level Cooccurrence Matrix Statistical Parameters[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 33(1): 293~304.
  • 6阎冬梅.[D].北京: 中国科学院遥感应用研究所,2003.
  • 7朱彩英,蓝朝桢,靳国旺.纹理图象亮度阈值法提取SAR图象居民地[J].中国图象图形学报(A辑),2003,8(6):616-619. 被引量:20

二级参考文献1

  • 1周成虎 骆剑承 等.遥感影像地学理解与分析[M].北京:科学出版社,2001..

共引文献122

同被引文献284

引证文献33

二级引证文献270

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部