摘要
得到C~n空间中有界域上光滑函数的一个积分核含有n-k个(0<k<n)任意固定点且关于变量z是全纯的积分公式,有别于有界域上光滑函数的Bochmer-Ono公式;由此式可进一步得到有界域上方程局部解的一种积分公式,并在含参数的局部意义下,有简单的一致估计。
The author obtains an integral formula of smooth functions on abounded domain in C ̄n,whose kernel involves n-k(0<k<n)arbitrary fixed points andholomorphic with respect to z,which is different from Bochner-Ono formula of smoothfunctions on bounded domains,and is called type Ⅰ Bochner-Ono formula of smooth functionson bounded domains. From this formula one can obtain an integral formula of the localsolution of equation on bounded domains,which is called typeⅠBochner-Ono formula of thelocal solution of equation on bounded domains and has simple uniform estimate in the senseof local parameters.
出处
《厦门大学学报(自然科学版)》
CAS
CSCD
北大核心
1994年第3期291-297,共7页
Journal of Xiamen University:Natural Science
基金
数学天元基金
关键词
α方程
有界域
局部解
B-O公式
TypeⅠBochner-Ono formula,Local solution,Equation,Boundeddomain,Holomorphic kernel