摘要
考虑镶边Riemann曲面=Ω∪Ω,其边界Ω由有限条互不相交的解析Jordan曲线组成.设P是Ω上的有限密度.又设Ω的理想边界β的调和测度为零,且由有限个Stoilow边界点{δ_1,…,δ_K}组成若每个δ_i满足N_i阶广义Heins条件,则Ω的椭圆维数不超过(N_i+1)-1.
Consider a noncompact bordered Riemann surface Ω=Ω∪ with com-pact border and null ideal boundary. Let P be a non-negative locally Holder continuouscovariant bivector on Ω and P∈L(Ω). By discussing the solutions of the equations △u=Puand ,where e_p is the P-unit solution of △u=Pu,it is proved that foran end Ω with a finite number K of ideal boundary elements in the sense of Kerekjato-Stoilow,if each boundary point δ_i satisfies so called N_i-Heins conditions,then the elliptic di-mention of Ω is not greater than.
出处
《厦门大学学报(自然科学版)》
CAS
CSCD
北大核心
1994年第5期581-584,共4页
Journal of Xiamen University:Natural Science
基金
国家自然科学基金
关键词
椭圆维数
镶边
黎曼曲面
Elliptic Dimensions,Bordered Riemann Surfaces,Null ideal boundary