摘要
引入复合二项Kantorovich-Stieltjes算子(S_rv)(x)=S_(k,τ)(x)(τ>0,0≤x≤1),证明了当τ→+∞时,(S_τv)(x)在(0,1]上几乎处处收敛于v关于Lebegue测度的绝对连续部份的Radan-Nikodym导数f(x).同时也证明了PoissonK-S算子(S_τv)(x)=(τdv)在[a,b](0,+∞)上也有类似的结论.
Let v be a finite Borel measure on[0,+∞).The Kantorovich-Stieltjesoperators of the composed binomial are defined byWhere and,the auther proves thatoperators (S_τv)converges a.e. on(0,1] to the Radan-Nikodym dirivative f(x) of theabsolutely continous part of v. From the proof of theorem,the anthor shows that for [a,b],x∈[a,b],the Poisson K-Soperators.have.
出处
《厦门大学学报(自然科学版)》
CAS
CSCD
北大核心
1994年第5期577-580,共4页
Journal of Xiamen University:Natural Science
关键词
K-S算子
算子逼近
泊板K-S算子
Composed binomial K-N operator, Radam-Nikodym dirivation,Poisson K-S operator,Operators approximation