期刊文献+

睡眠脑电的非线性动力学方法 被引量:19

EEG time-series analysis using nonlinear dynamics method for sleep monitoring
下载PDF
导出
摘要 在8例健康成年人的睡眠脑电监测实验基础上,利用已有的专家人工分期结果,提取睡眠各阶段特征数据,应用近似熵、复杂度和功率谱熵三种方法进行分析,从客观量化的复杂性度量来刻划睡眠深度的变化情况.对每个睡眠分期选取5 000点数据,数据窗取1 000点,逐次延时一个采样间隔得到几个时间序列,分别求复杂度,最后取均值即得此分期复杂性测度值.结果表明三种方法均与专家人工分期结果相吻合.近似熵算法复杂不适合在线分析;复杂度算法较简单,但数据粗粒化处理容易丢失信息;功率谱熵算法简单、快速及有效.因而用统计分析方法分析,表明功率谱熵能较好地反映睡眠深度的变化情况. Approximate entropy, Lem-Ziv complexity and power spectral entropy (PSE) are nonlinear dynamic methods to measure Electroencephalograph (EEG) time-series complexity in recent years. EEG is a kind of biomedical signal to monitor the depth of sleep. The algorithm of approximate entropy, Lem-Ziv complexity and power spectral entropy are introduced. A discussion is made on their merits and demerits. For 8 healthy volunteers without any medication, analysis of EEG using above mentioned methods is performed. Results show that the PSE of EEG signals during sleep process can correctly affect sleep deepness. and accord with the results of sleep stage by expert.
出处 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2005年第2期174-177,共4页 Journal of Jiangsu University:Natural Science Edition
基金 江苏省高校自然科学基金资助项目(03KJB510025)
关键词 脑电波 睡眠分期 复杂度 近似熵 功率谱熵 Biomedical engineering Electroencephalography
  • 相关文献

参考文献9

  • 1董国亚,吴祈耀.近似熵和复杂度应用于睡眠脑电研究的比较[J].中国医疗器械杂志,1999,23(6):311-315. 被引量:25
  • 2BEN H ,BENOIT M .Knowledge-based approach to sleep EEG analysis--a feasibility study[J].IEEE Trans on Bio-Med Eng,1989,36(5):510.
  • 3HESE P Van,PHILIPS W.Automatic detection of sleep stages using the EEG [A].In:IEEE 2001 Proceeding of 23rd Annual EMBS International Conference[C].Turkey:Istanbul,2001.
  • 4KASPER F ,SCHUSTER H G .Easily calculable mea-sure for complexity of spatiotemporal patterns[J].Physical Review A,1987,36:842-848.
  • 5陈晓平,和卫星,温军玲.基于脑电波复杂度的麻醉深度监测[J].江苏大学学报(自然科学版),2003,24(6):73-75. 被引量:8
  • 6PINCUS S M.Approximate entropy as a measure of system complexity[J].Proc Natl Acad Sci USA,1991,88:2297-2301.
  • 7KAPUR J N,KESAVAN H K.Entropy Optimization Pri-nciples with Application[M].San Diego:Academic Press,1992.
  • 8吴浩江,张辉,郑崇勋,孔金生.功率谱熵在局灶性缺血性脑损伤无创检测中的应用[J].生物医学工程学杂志,2003,20(2):229-232. 被引量:13
  • 9REZEK I A,ROBERTS S J.Stochastic complexity measures for physiological signal analysis [J].IEEE Transaction on Biomedical Engineering,1998,45(9):1186.

二级参考文献13

  • 1刘建平,郑崇勋,马建青.不同睡眠期脑电图复杂性研究[J].生物医学工程学杂志,1996,13(2):119-122. 被引量:9
  • 2刘建平,贺太纲,郑崇勋,黄远桂.EEG复杂性测度用于大脑负荷状态的研究[J].生物医学工程学杂志,1997,14(1):33-37. 被引量:16
  • 3[1]Thakor NV, Xing RG. Nonlinear changes in brain's response in the event of injury as detected by adaptive coherence estimation of evoked potentials [J]. IEEE Transaction on Biomedical Engineering,1995; 42(1)∶42
  • 4[2]Goel V, Brambrink AM, Baykal A, et al. Dominant frequency analysis of EEG reveals brain's response during injury and recovery [J].IEEE Transaction on Biomedical Engineering,1996;43(11)∶1083
  • 5[3]Zhang JW, Zheng CX, Xie A. Bispectrum analysis of focal ischemic cerebral EEG signal using third-order recursion method [J]. IEEE Transaction on Biomedical Engineering,2000;47(3)∶352
  • 6[4]Zhang JW, Liu JR, Zheng CX, et al. Noninvasive early detection of focal cerebral ischemia [J]. IEEE Engineering in Medicine and Biology Magazine, 2000; 19(6)∶74
  • 7[5]Kapur JN, Kesavan HK. Entropy optimization principles with applications [M]. San Diego: Academic Press,1992∶35-36
  • 8[6]Rezek IA, Roberts SJ. Stochastic complexity measures for physiological signal analysis [J]. IEEE Transaction on. Biomedical. Engineering,1998;45(9)∶1186
  • 9Lempel A, Ziv J. On the Complexity of Finite Sequences [J]. IEEE Trans Inform Theory, 1976,22:75 - 81.
  • 10Kaspar F, Schuster H G. Easily Calculable Measure for the Complexity of Spatiotemporal Patterns[J ]. Phys Rev A, 1987,36:842 - 848.

共引文献43

同被引文献218

引证文献19

二级引证文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部